Tverberg-Type Theorems for Separoids

被引:0
|
作者
Juan Jose Montellano-Ballesteros
Attila Por
Ricardo Strausz
机构
[1] Instituto de Matematicas,
[2] U.N.A.M.,undefined
[3] Circuito Exterior,undefined
[4] C.U.,undefined
[5] 04510 Mexico D.F.,undefined
[6] Institut Teoretick\'e Informatiky,undefined
[7] Universita Karlova v Praze,undefined
[8] Malostranske nam. 25,undefined
[9] Praha 1,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Convex Hull; General Position; Injective Function;
D O I
暂无
中图分类号
学科分类号
摘要
Let $S$ be a $d$-dimensional separoid of $(k-1)(d+1)+1$ convex sets in some "large-dimensional" Euclidean space $\E^N$. We prove a theorem that can be interpreted as follows: if the separoid $S$ can be mapped with a monomorphism to a $d$-dimensional separoid of points $P$ in general position, then there exists a $k$-colouring $\varsigma\colon \ S\to K_k$ such that, for each pair of colours $i,j\in K_k$, the convex hulls of their preimages do intersect---they are not separated. Here, by a monomorphism we mean an injective function such that the preimage of separated sets are separated. In a sense, this result is "dual" to the Hadwiger-type theorems proved by Goodman and Pollack (1988) and Arocha et al. (2002). We also introduce $\T(k,d)$, the minimum number $n$ such that all $d$-dimensional separoids of order at least $n$ can be $k$-coloured as before. By means of examples and explicit colourings, we show that for all $k>2$ and $d>0$, \[(k-1)(d+1)+1<\T(k,d)<{k\choose2}(d+1)+1.\] Furthermore, by means of a probabilistic argument, we show that for each $d$ there exists a constant $C=C(d)$ such that for all $k$, $\T(k,d)\leq Ck\log k$.
引用
收藏
页码:513 / 523
页数:10
相关论文
共 50 条
  • [31] Separoids, their categories and a Hadwiger-type theorem for transversals
    Arocha, JL
    Bracho, J
    Montejano, L
    Oliveros, D
    Strausz, R
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 27 (03) : 377 - 385
  • [32] Separoids, Their Categories and a Hadwiger-Type Theorem for Transversals
    J. L. Arocha
    J. Bracho
    L. Montejano
    D. Oliveros
    R. Strausz
    Discrete & Computational Geometry, 2002, 27 : 377 - 385
  • [33] Regular Polygonal Partitions of a Tverberg Type
    Leiner, Leah
    Simon, Steven
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (03) : 1053 - 1071
  • [34] Regular Polygonal Partitions of a Tverberg Type
    Leah Leiner
    Steven Simon
    Discrete & Computational Geometry, 2021, 66 : 1053 - 1071
  • [35] THE DISCRETE YET UBIQUITOUS THEOREMS OF CARATHEODORY, HELLY, SPERNER, TUCKER, AND TVERBERG
    De Loera, Jesus A.
    Goaoc, Xavier
    Meunier, Frederic
    Mustafa, Nabil H.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 56 (03) : 415 - 511
  • [36] A TVERBERG TYPE THEOREM FOR COLLECTIVELY UNAVOIDABLE COMPLEXES
    Jojic, Dusko
    Panina, Gaiane
    Zivaljevic, Rade
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 241 (01) : 17 - 36
  • [37] Stochastic Tverberg Theorems With Applications in Multiclass Logistic Regression, Separability, and Centerpoints of Data
    De Loera, Jesus A.
    Hogan, Thomas
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (04): : 1151 - 1166
  • [38] A Tverberg type theorem for collectively unavoidable complexes
    Duško Jojić
    Gaiane Panina
    Rade Živaljević
    Israel Journal of Mathematics, 2021, 241 : 17 - 36
  • [39] Plus Minus Analogues for Affine Tverberg Type Results
    Blagojevic, Pavle V. M.
    Ziegler, Guenter M.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (02) : 535 - 541
  • [40] Plus Minus Analogues for Affine Tverberg Type Results
    Pavle V. M. Blagojević
    Günter M. Ziegler
    Discrete & Computational Geometry, 2020, 64 : 535 - 541