Tverberg-Type Theorems for Separoids

被引:0
|
作者
Juan Jose Montellano-Ballesteros
Attila Por
Ricardo Strausz
机构
[1] Instituto de Matematicas,
[2] U.N.A.M.,undefined
[3] Circuito Exterior,undefined
[4] C.U.,undefined
[5] 04510 Mexico D.F.,undefined
[6] Institut Teoretick\'e Informatiky,undefined
[7] Universita Karlova v Praze,undefined
[8] Malostranske nam. 25,undefined
[9] Praha 1,undefined
来源
关键词
Computational Mathematic; Euclidean Space; Convex Hull; General Position; Injective Function;
D O I
暂无
中图分类号
学科分类号
摘要
Let $S$ be a $d$-dimensional separoid of $(k-1)(d+1)+1$ convex sets in some "large-dimensional" Euclidean space $\E^N$. We prove a theorem that can be interpreted as follows: if the separoid $S$ can be mapped with a monomorphism to a $d$-dimensional separoid of points $P$ in general position, then there exists a $k$-colouring $\varsigma\colon \ S\to K_k$ such that, for each pair of colours $i,j\in K_k$, the convex hulls of their preimages do intersect---they are not separated. Here, by a monomorphism we mean an injective function such that the preimage of separated sets are separated. In a sense, this result is "dual" to the Hadwiger-type theorems proved by Goodman and Pollack (1988) and Arocha et al. (2002). We also introduce $\T(k,d)$, the minimum number $n$ such that all $d$-dimensional separoids of order at least $n$ can be $k$-coloured as before. By means of examples and explicit colourings, we show that for all $k>2$ and $d>0$, \[(k-1)(d+1)+1<\T(k,d)<{k\choose2}(d+1)+1.\] Furthermore, by means of a probabilistic argument, we show that for each $d$ there exists a constant $C=C(d)$ such that for all $k$, $\T(k,d)\leq Ck\log k$.
引用
收藏
页码:513 / 523
页数:10
相关论文
共 50 条
  • [1] Tverberg-type theorems for separoids
    Montellano-Ballesteros, JJ
    Pór, A
    Strausz, R
    DISCRETE & COMPUTATIONAL GEOMETRY, 2006, 35 (03) : 513 - 523
  • [2] Tverberg-Type Theorems for Intersecting by Rays
    R. N. Karasev
    Discrete & Computational Geometry, 2011, 45 : 340 - 347
  • [3] Tverberg-Type Theorems for Intersecting by Rays
    Karasev, R. N.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2011, 45 (02) : 340 - 347
  • [4] Tverberg-Type Theorems for Matroids: A Counterexample and a Proof
    Blagojevic, Pavle V. M.
    Haase, Albert
    Ziegler, Guenter M.
    COMBINATORICA, 2019, 39 (03) : 477 - 500
  • [5] TVERBERG-TYPE THEOREMS FOR PSEUDOCONFIGURATIONS OF POINTS IN THE PLANE
    ROUDNEFF, JP
    EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (02) : 189 - 198
  • [6] Tverberg-Type Theorems for Matroids: A Counterexample and a Proof
    Pavle V. M. Blagojević
    Albert Haase
    Günter M. Ziegler
    Combinatorica, 2019, 39 : 477 - 500
  • [7] Tverberg-Type Theorems with Altered Intersection Patterns (Nerves)
    De Loera, Jesus A.
    Hogan, Thomas A.
    Oliveros, Deborah
    Yang, Dominic
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (03) : 916 - 937
  • [8] Tverberg-Type Theorems with Altered Intersection Patterns (Nerves)
    Jesús A. De Loera
    Thomas A. Hogan
    Deborah Oliveros
    Dominic Yang
    Discrete & Computational Geometry, 2021, 65 : 916 - 937
  • [9] From Word-Representable Graphs to Altered Tverberg-Type Theorems
    Deborah Oliveros
    Antonio J. Torres
    Discrete & Computational Geometry, 2025, 73 (2) : 293 - 309
  • [10] A Tverberg-type result on multicolored simplices
    Pach, J
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (02): : 71 - 76