SWAP test for an arbitrary number of quantum states

被引:0
|
作者
Xavier Gitiaux
Ian Morris
Maria Emelianenko
Mingzhen Tian
机构
[1] George Mason University,Department of Computer Science
[2] George Mason University,Department of Physics and Astronomy
[3] George Mason University,Department of Mathematical Sciences
[4] George Mason University,Quantum Science and Engineering Center
关键词
Swap test; Quantum circuits; Quantum algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a recursive algorithm to generalize the quantum SWAP test for an arbitrary number m of quantum states requiring O(m) controlled-swap (CSWAP) gates and O(logm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log m)$$\end{document} ancillary qubits. We construct a quantum circuit able to simultaneously measure overlaps |⟨ϕi,ϕj⟩|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\langle \phi _i, \phi _j\rangle |^2$$\end{document} of m arbitrary pure states |ϕ1…ϕm⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|{\phi _1\ldots \phi _m}\rangle }$$\end{document}. Our construction relies on a pairing unitary that generates a superposition state where every pair of input states is labeled by a basis state formed by the ancillaries. By implementing a simple genetic algorithm, we give numerical evidence indicating that our method of labeling each pair of inputs using CSWAP gates is optimal up to m=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=8$$\end{document}. Potential applications of the new circuits in the context of quantum machine learning are discussed.
引用
收藏
相关论文
共 50 条
  • [41] Generation of arbitrary quantum states of traveling fields
    Dakna, M
    Clausen, J
    Knöll, L
    Welsch, DG
    PHYSICAL REVIEW A, 1999, 59 (02): : 1658 - 1661
  • [42] Swap Test-based characterization of decoherence in universal quantum computers
    Ripper, Pedro
    Amaral, Gustavo
    Temporao, Guilherme
    QUANTUM INFORMATION PROCESSING, 2023, 22 (05)
  • [43] Quantum neural networks model based on swap test and phase estimation
    Li, Panchi
    Wang, Bing
    NEURAL NETWORKS, 2020, 130 : 152 - 164
  • [44] Swap Test-based characterization of decoherence in universal quantum computers
    Pedro Ripper
    Gustavo Amaral
    Guilherme Temporão
    Quantum Information Processing, 22
  • [45] Quantum Teleportation Protocol of Arbitrary Quantum States by Using Quantum Fourier Transform
    Cao, Zhengwen
    Zhang, Chenhao
    He, Chen
    Zhang, Minghui
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2020, 59 (10) : 3174 - 3183
  • [46] Quantum Teleportation Protocol of Arbitrary Quantum States by Using Quantum Fourier Transform
    Zhengwen Cao
    Chenhao Zhang
    Chen He
    Minghui Zhang
    International Journal of Theoretical Physics, 2020, 59 : 3174 - 3183
  • [47] OPTIMAL ESTIMATE OF THE STATES OF A GENERALIZED ASYNCHRONOUS EVENT FLOW WITH AN ARBITRARY NUMBER OF STATES
    Gortsev, A. M.
    Nezhel'skaya, L. A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2019, (47): : 12 - 23
  • [48] Quantum simulations with multiphoton number states
    Stobinska, Magdalena
    2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [49] Number of steady states of quantum evolutions
    Amato, Daniele
    Facchi, Paolo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Missing quantum number of Floquet states
    Le, Cristian M.
    Akashi, Ryosuke
    Tsuneyuki, Shinji
    PHYSICAL REVIEW A, 2022, 105 (05)