SWAP test for an arbitrary number of quantum states

被引:0
|
作者
Xavier Gitiaux
Ian Morris
Maria Emelianenko
Mingzhen Tian
机构
[1] George Mason University,Department of Computer Science
[2] George Mason University,Department of Physics and Astronomy
[3] George Mason University,Department of Mathematical Sciences
[4] George Mason University,Quantum Science and Engineering Center
关键词
Swap test; Quantum circuits; Quantum algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a recursive algorithm to generalize the quantum SWAP test for an arbitrary number m of quantum states requiring O(m) controlled-swap (CSWAP) gates and O(logm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log m)$$\end{document} ancillary qubits. We construct a quantum circuit able to simultaneously measure overlaps |⟨ϕi,ϕj⟩|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\langle \phi _i, \phi _j\rangle |^2$$\end{document} of m arbitrary pure states |ϕ1…ϕm⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|{\phi _1\ldots \phi _m}\rangle }$$\end{document}. Our construction relies on a pairing unitary that generates a superposition state where every pair of input states is labeled by a basis state formed by the ancillaries. By implementing a simple genetic algorithm, we give numerical evidence indicating that our method of labeling each pair of inputs using CSWAP gates is optimal up to m=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=8$$\end{document}. Potential applications of the new circuits in the context of quantum machine learning are discussed.
引用
收藏
相关论文
共 50 条
  • [21] A linear photonic swap test circuit for quantum kernel estimation
    Baldazzi, Alessio
    Leone, Nicolo
    Sanna, Matteo
    Azzini, Stefano
    Pavesi, Lorenzo
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (04):
  • [22] Realization of Quantum Swap Gate and Generation of Entangled Coherent States
    Zhang, Ziqiu
    Jiang, Xi
    Tang, Shiqing
    SYMMETRY-BASEL, 2022, 14 (09):
  • [23] THE NUMBER OF STATES OF A QUANTUM SYSTEM
    ORFANOPOULOS, BA
    PHYSICS ESSAYS, 1993, 6 (03) : 380 - 383
  • [24] Bidirectional quantum teleportation of an arbitrary number of qubits over a noisy quantum system using 2n Bell states as quantum channel
    Mafi, Yousef
    Kazemikhah, Payman
    Ahmadkhaniha, Armin
    Aghababa, Hossein
    Kolahdouz, Mohammadreza
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (09)
  • [25] Quantum teleportation of an arbitrary superposition of atomic states
    陈琼
    方细明
    Chinese Physics B, 2008, 17 (05) : 1587 - 1592
  • [26] Quantum Nonlocality of Arbitrary Dimensional Bipartite States
    Ming Li
    Tinggui Zhang
    Bobo Hua
    Shao-Ming Fei
    Xianqing Li-Jost
    Scientific Reports, 5
  • [27] Generalized coherent states for arbitrary quantum systems
    Gazeau, JP
    Monceau, P
    CONFERENCE MOSHE FLATO 1999, VOL II: QUANTIZATION, DEFORMATIONS, AND SYMMETRIES, 2000, 22 : 131 - 144
  • [28] Quantum speed limit for arbitrary initial states
    Zhang, Ying-Jie
    Han, Wei
    Xia, Yun-Jie
    Cao, Jun-Peng
    Fan, Heng
    SCIENTIFIC REPORTS, 2014, 4
  • [29] Synthesizing arbitrary quantum states in a superconducting resonator
    Hofheinz, Max
    Wang, H.
    Ansmann, M.
    Bialczak, Radoslaw C.
    Lucero, Erik
    Neeley, M.
    O'Connell, A. D.
    Sank, D.
    Wenner, J.
    Martinis, John M.
    Cleland, A. N.
    NATURE, 2009, 459 (7246) : 546 - 549
  • [30] Quantum Nonlocality of Arbitrary Dimensional Bipartite States
    Li, Ming
    Zhang, Tinggui
    Hua, Bobo
    Fei, Shao-Ming
    Li-Jost, Xianqing
    SCIENTIFIC REPORTS, 2015, 5