SWAP test for an arbitrary number of quantum states

被引:0
|
作者
Xavier Gitiaux
Ian Morris
Maria Emelianenko
Mingzhen Tian
机构
[1] George Mason University,Department of Computer Science
[2] George Mason University,Department of Physics and Astronomy
[3] George Mason University,Department of Mathematical Sciences
[4] George Mason University,Quantum Science and Engineering Center
关键词
Swap test; Quantum circuits; Quantum algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a recursive algorithm to generalize the quantum SWAP test for an arbitrary number m of quantum states requiring O(m) controlled-swap (CSWAP) gates and O(logm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log m)$$\end{document} ancillary qubits. We construct a quantum circuit able to simultaneously measure overlaps |⟨ϕi,ϕj⟩|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\langle \phi _i, \phi _j\rangle |^2$$\end{document} of m arbitrary pure states |ϕ1…ϕm⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|{\phi _1\ldots \phi _m}\rangle }$$\end{document}. Our construction relies on a pairing unitary that generates a superposition state where every pair of input states is labeled by a basis state formed by the ancillaries. By implementing a simple genetic algorithm, we give numerical evidence indicating that our method of labeling each pair of inputs using CSWAP gates is optimal up to m=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=8$$\end{document}. Potential applications of the new circuits in the context of quantum machine learning are discussed.
引用
收藏
相关论文
共 50 条
  • [31] Synthesizing arbitrary quantum states in a superconducting resonator
    Max Hofheinz
    H. Wang
    M. Ansmann
    Radoslaw C. Bialczak
    Erik Lucero
    M. Neeley
    A. D. O'Connell
    D. Sank
    J. Wenner
    John M. Martinis
    A. N. Cleland
    Nature, 2009, 459 : 546 - 549
  • [32] Concurrence of arbitrary dimensional bipartite quantum states
    Chen, K
    Albeverio, S
    Fei, SM
    PHYSICAL REVIEW LETTERS, 2005, 95 (04)
  • [33] Generalized intelligent states for an arbitrary quantum system
    El Kinani, AH
    Daoud, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (26): : 5373 - 5387
  • [34] Optimal Purification of Arbitrary Quantum Mixed States
    Ping, Yuan
    Li, Huina
    Pan, Xiuqin
    Luo, Mingxing
    Zhang, Zhili
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (12) : 4367 - 4373
  • [35] Quantum speed limit for arbitrary initial states
    Ying-Jie Zhang
    Wei Han
    Yun-Jie Xia
    Jun-Peng Cao
    Heng Fan
    Scientific Reports, 4
  • [36] Optimal Purification of Arbitrary Quantum Mixed States
    Yuan Ping
    Huina Li
    Xiuqin Pan
    Mingxing Luo
    Zhili Zhang
    International Journal of Theoretical Physics, 2013, 52 : 4367 - 4373
  • [37] Engineering arbitrary pure and mixed quantum states
    Pechen, Alexander
    PHYSICAL REVIEW A, 2011, 84 (04):
  • [38] Entanglement cost for sequences of arbitrary quantum states
    Bowen, Garry
    Datta, Nilanjana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (04)
  • [39] Generation of arbitrary quantum states of traveling fields
    Dakna, M.
    Clausen, J.
    Knoll, L.
    Welsch, D.-G.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1999, 59 (02):
  • [40] Quantum teleportation of an arbitrary superposition of atomic states
    Chen Qiong
    Fang Xi-Ming
    CHINESE PHYSICS B, 2008, 17 (05) : 1587 - 1592