SWAP test for an arbitrary number of quantum states

被引:0
|
作者
Xavier Gitiaux
Ian Morris
Maria Emelianenko
Mingzhen Tian
机构
[1] George Mason University,Department of Computer Science
[2] George Mason University,Department of Physics and Astronomy
[3] George Mason University,Department of Mathematical Sciences
[4] George Mason University,Quantum Science and Engineering Center
关键词
Swap test; Quantum circuits; Quantum algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a recursive algorithm to generalize the quantum SWAP test for an arbitrary number m of quantum states requiring O(m) controlled-swap (CSWAP) gates and O(logm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log m)$$\end{document} ancillary qubits. We construct a quantum circuit able to simultaneously measure overlaps |⟨ϕi,ϕj⟩|2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\langle \phi _i, \phi _j\rangle |^2$$\end{document} of m arbitrary pure states |ϕ1…ϕm⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${|{\phi _1\ldots \phi _m}\rangle }$$\end{document}. Our construction relies on a pairing unitary that generates a superposition state where every pair of input states is labeled by a basis state formed by the ancillaries. By implementing a simple genetic algorithm, we give numerical evidence indicating that our method of labeling each pair of inputs using CSWAP gates is optimal up to m=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=8$$\end{document}. Potential applications of the new circuits in the context of quantum machine learning are discussed.
引用
收藏
相关论文
共 50 条
  • [1] SWAP test for an arbitrary number of quantum states
    Gitiaux, Xavier
    Morris, Ian
    Emelianenko, Maria
    Tian, Mingzhen
    QUANTUM INFORMATION PROCESSING, 2022, 21 (10)
  • [2] Quantum multi-state Swap Test: an algorithm for estimating overlaps of arbitrary number quantum states
    Liu, Wen
    Li, Yang-Zhi
    Yin, Han-Wen
    Wang, Zhi-Rao
    Wu, Jiang
    EPJ QUANTUM TECHNOLOGY, 2024, 11 (01)
  • [3] Quantum private comparison of arbitrary single qubit states based on swap test
    黄曦
    昌燕
    程稳
    侯敏
    张仕斌
    Chinese Physics B, 2022, 31 (04) : 70 - 79
  • [4] Quantum private comparison of arbitrary single qubit states based on swap test
    Huang, Xi
    Chang, Yan
    Cheng, Wen
    Hou, Min
    Zhang, Shi-Bin
    CHINESE PHYSICS B, 2022, 31 (04)
  • [5] Perfect swap and transfer of arbitrary quantum states
    Maleki, Yusef
    Zheltikov, Aleksei M.
    OPTICS COMMUNICATIONS, 2021, 496
  • [6] The controlled SWAP test for entanglement of mixed quantum states
    Zhang, Rui-Qi
    Qu, Yue-Di
    Shen, Shu-Qian
    Li, Ming
    Wang, Jing
    EPL, 2024, 145 (01)
  • [7] The controlled SWAP test for determining quantum entanglement
    Foulds, Steph
    Kendon, Viv
    Spiller, Tim
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03)
  • [8] Swap Test with Quantum Dot Charge Qubits
    Li, Y-D
    Barraza, N.
    Alvarado Barrios, G.
    Solano, E.
    Albarran-Arriagada, F.
    PHYSICAL REVIEW APPLIED, 2022, 18 (01):
  • [9] Universal quantum encryption for quantum signature using the swap test
    Kang, Min-Sung
    Choi, Ho-Won
    Pramanik, Tanumoy
    Han, Sang-Wook
    Moon, Sung
    QUANTUM INFORMATION PROCESSING, 2018, 17 (10)
  • [10] ENTANGLEMENT AND SWAP OF QUANTUM STATES IN TWO QUBITS
    Ikuto, Takaya
    Ishizaka, Satoshi
    QUANTUM INFORMATION & COMPUTATION, 2015, 15 (11-12) : 923 - 931