共 50 条
SWAP test for an arbitrary number of quantum states
被引:0
|作者:
Xavier Gitiaux
Ian Morris
Maria Emelianenko
Mingzhen Tian
机构:
[1] George Mason University,Department of Computer Science
[2] George Mason University,Department of Physics and Astronomy
[3] George Mason University,Department of Mathematical Sciences
[4] George Mason University,Quantum Science and Engineering Center
来源:
关键词:
Swap test;
Quantum circuits;
Quantum algorithms;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We develop a recursive algorithm to generalize the quantum SWAP test for an arbitrary number m of quantum states requiring O(m) controlled-swap (CSWAP) gates and O(logm)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(\log m)$$\end{document} ancillary qubits. We construct a quantum circuit able to simultaneously measure overlaps |⟨ϕi,ϕj⟩|2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|\langle \phi _i, \phi _j\rangle |^2$$\end{document} of m arbitrary pure states |ϕ1…ϕm⟩\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${|{\phi _1\ldots \phi _m}\rangle }$$\end{document}. Our construction relies on a pairing unitary that generates a superposition state where every pair of input states is labeled by a basis state formed by the ancillaries. By implementing a simple genetic algorithm, we give numerical evidence indicating that our method of labeling each pair of inputs using CSWAP gates is optimal up to m=8\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$m=8$$\end{document}. Potential applications of the new circuits in the context of quantum machine learning are discussed.
引用
收藏
相关论文