A branch and cut algorithm for minimum spanning trees under conflict constraints

被引:0
|
作者
Phillippe Samer
Sebastián Urrutia
机构
[1] Universidade Federal de Minas Gerais (UFMG),
来源
Optimization Letters | 2015年 / 9卷
关键词
Optimal trees; Conflict constraints; Stable set ; Branch and cut; 90C27; 90C57;
D O I
暂无
中图分类号
学科分类号
摘要
We study approaches for the exact solution of the NP-hard minimum spanning tree problem under conflict constraints. Given a graph G(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(V,E)$$\end{document} and a set C⊂E×E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \subset E \times E$$\end{document} of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the edges from each pair in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. The problem was introduced recently in the literature, with several results on its complexity and approximability. Some formulations and both exact and heuristic algorithms were also discussed, but computational results indicate considerably large duality gaps and a lack of optimality certificates for benchmark instances. In this paper, we build on the representation of conflict constraints using an auxiliary conflict graph G^(E,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{G}(E,C)$$\end{document}, where stable sets correspond to conflict-free subsets of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}. We introduce a general preprocessing method and a branch and cut algorithm using an IP formulation with exponentially sized classes of valid inequalities for both the spanning tree and the stable set polytopes. Encouraging computational results indicate that the dual bounds of our approach are significantly stronger than those previously available, already in the initial LP relaxation, and we are able to provide new feasibility and optimality certificates.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 50 条
  • [41] The minimum labeling spanning trees
    Chang, RS
    Leu, SJ
    INFORMATION PROCESSING LETTERS, 1997, 63 (05) : 277 - 282
  • [42] Successive minimum spanning trees
    Janson, Svante
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (01) : 126 - 172
  • [43] The saga of minimum spanning trees
    Mares, Martin
    COMPUTER SCIENCE REVIEW, 2008, 2 (03) : 165 - 221
  • [44] CLUSTERING WITH MINIMUM SPANNING TREES
    Zhou, Yan
    Grygorash, Oleksandr
    Hain, Thomas F.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (01) : 139 - 177
  • [45] A BRANCH-AND-BOUND ALGORITHM FOR THE CAPACITATED MINIMUM SPANNING TREE PROBLEM
    MALIK, K
    YU, G
    NETWORKS, 1993, 23 (06) : 525 - 532
  • [46] Branch-and-cut-and-price algorithms for the Degree Constrained Minimum Spanning Tree Problem
    Luis Henrique Bicalho
    Alexandre Salles da Cunha
    Abilio Lucena
    Computational Optimization and Applications, 2016, 63 : 755 - 792
  • [47] Branch-and-cut-and-price algorithms for the Degree Constrained Minimum Spanning Tree Problem
    Bicalho, Luis Henrique
    da Cunha, Alexandre Salles
    Lucena, Abilio
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (03) : 755 - 792
  • [48] A branch-price-and-cut algorithm for the minimum evolution problem
    Catanzaro, Daniele
    Aringhieri, Roberto
    Di Summa, Marco
    Pesenti, Raffaele
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 244 (03) : 753 - 765
  • [49] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [50] A new algorithm for finding minimum spanning trees with undirected neutrosophic graphs
    Dey, Arindam
    Broumi, Said
    Le Hoang Son
    Bakali, Assia
    Talea, Mohamed
    Smarandache, Florentin
    GRANULAR COMPUTING, 2019, 4 (01) : 63 - 69