A branch and cut algorithm for minimum spanning trees under conflict constraints

被引:0
|
作者
Phillippe Samer
Sebastián Urrutia
机构
[1] Universidade Federal de Minas Gerais (UFMG),
来源
Optimization Letters | 2015年 / 9卷
关键词
Optimal trees; Conflict constraints; Stable set ; Branch and cut; 90C27; 90C57;
D O I
暂无
中图分类号
学科分类号
摘要
We study approaches for the exact solution of the NP-hard minimum spanning tree problem under conflict constraints. Given a graph G(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(V,E)$$\end{document} and a set C⊂E×E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \subset E \times E$$\end{document} of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the edges from each pair in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. The problem was introduced recently in the literature, with several results on its complexity and approximability. Some formulations and both exact and heuristic algorithms were also discussed, but computational results indicate considerably large duality gaps and a lack of optimality certificates for benchmark instances. In this paper, we build on the representation of conflict constraints using an auxiliary conflict graph G^(E,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{G}(E,C)$$\end{document}, where stable sets correspond to conflict-free subsets of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}. We introduce a general preprocessing method and a branch and cut algorithm using an IP formulation with exponentially sized classes of valid inequalities for both the spanning tree and the stable set polytopes. Encouraging computational results indicate that the dual bounds of our approach are significantly stronger than those previously available, already in the initial LP relaxation, and we are able to provide new feasibility and optimality certificates.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 50 条
  • [21] Branch-and-cut and Branch-and-cut-and-price algorithms for the adjacent only quadratic minimum spanning tree problem
    Pereira, Dilson Lucas
    Gendreau, Michel
    da Cunha, Alexandre Salles
    NETWORKS, 2015, 65 (04) : 367 - 379
  • [22] Approximate Minimum Directed Spanning Trees Under Congestion
    Lenzen, Christoph
    Vahidi, Hossein
    STRUCTURAL INFORMATION AND COMMUNICATION COMPLEXITY, SIROCCO 2021, 2021, 12810 : 352 - 369
  • [23] A branch and bound algorithm for capacitated minimum spanning tree problem
    Han, J
    McMahon, G
    Sugden, S
    EURO-PAR 2002 PARALLEL PROCESSING, PROCEEDINGS, 2002, 2400 : 404 - 407
  • [24] Minimum spanning tree with conflicting edge pairs: a branch-and-cut approach
    Francesco Carrabs
    Raffaele Cerulli
    Rosa Pentangelo
    Andrea Raiconi
    Annals of Operations Research, 2021, 298 : 65 - 78
  • [25] Minimum spanning tree with conflicting edge pairs: a branch-and-cut approach
    Carrabs, Francesco
    Cerulli, Raffaele
    Pentangelo, Rosa
    Raiconi, Andrea
    ANNALS OF OPERATIONS RESEARCH, 2021, 298 (1-2) : 65 - 78
  • [26] A branch and cut method for the degree-constrained minimum spanning tree problem
    Caccetta, L
    Hill, SP
    NETWORKS, 2001, 37 (02) : 74 - 83
  • [27] An improved clustering algorithm for minimum spanning trees in multidimensional data
    Xie, Zhi-Qiang
    Yu, Liang
    Yang, Jing
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2008, 29 (08): : 851 - 857
  • [28] A PARALLEL ALGORITHM FOR MULTIPLE UPDATES OF MINIMUM SPANNING-TREES
    PAWAGI, S
    PROCEEDINGS OF THE 1989 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, VOL 3: ALGORITHMS AND APPLICATIONS, 1989, : 9 - 15
  • [29] Concurrent threads and optimal parallel minimum spanning trees algorithm
    Chong, KW
    Han, YJ
    Lam, TW
    JOURNAL OF THE ACM, 2001, 48 (02) : 297 - 323
  • [30] INCREMENTAL DISTRIBUTED ASYNCHRONOUS ALGORITHM FOR MINIMUM SPANNING-TREES
    TSIN, YH
    COMPUTER NETWORKS AND ISDN SYSTEMS, 1993, 26 (02): : 227 - 232