A branch and cut algorithm for minimum spanning trees under conflict constraints

被引:0
|
作者
Phillippe Samer
Sebastián Urrutia
机构
[1] Universidade Federal de Minas Gerais (UFMG),
来源
Optimization Letters | 2015年 / 9卷
关键词
Optimal trees; Conflict constraints; Stable set ; Branch and cut; 90C27; 90C57;
D O I
暂无
中图分类号
学科分类号
摘要
We study approaches for the exact solution of the NP-hard minimum spanning tree problem under conflict constraints. Given a graph G(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G(V,E)$$\end{document} and a set C⊂E×E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C \subset E \times E$$\end{document} of conflicting edge pairs, the problem consists of finding a conflict-free minimum spanning tree, i.e. feasible solutions are allowed to include at most one of the edges from each pair in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. The problem was introduced recently in the literature, with several results on its complexity and approximability. Some formulations and both exact and heuristic algorithms were also discussed, but computational results indicate considerably large duality gaps and a lack of optimality certificates for benchmark instances. In this paper, we build on the representation of conflict constraints using an auxiliary conflict graph G^(E,C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{G}(E,C)$$\end{document}, where stable sets correspond to conflict-free subsets of E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E$$\end{document}. We introduce a general preprocessing method and a branch and cut algorithm using an IP formulation with exponentially sized classes of valid inequalities for both the spanning tree and the stable set polytopes. Encouraging computational results indicate that the dual bounds of our approach are significantly stronger than those previously available, already in the initial LP relaxation, and we are able to provide new feasibility and optimality certificates.
引用
收藏
页码:41 / 55
页数:14
相关论文
共 50 条
  • [1] A branch and cut algorithm for minimum spanning trees under conflict constraints
    Samer, Phillippe
    Urrutia, Sebastian
    OPTIMIZATION LETTERS, 2015, 9 (01) : 41 - 55
  • [2] A branch-and-cut algorithm for the minimum branch vertices spanning tree problem
    Silvestri, Selene
    Laporte, Gilbert
    Cerulli, Raffaele
    COMPUTERS & OPERATIONS RESEARCH, 2017, 81 : 322 - 332
  • [3] A distributed algorithm for constructing minimum delay spanning trees under bandwidth constraints on overlay networks
    Baduge, Thilmee M.
    Hiromori, Akihito
    Yamaguchi, Hirozumi
    Higashino, Teruo
    Systems and Computers in Japan, 2006, 37 (14): : 15 - 24
  • [4] Dendriform Branch Cut Algorithm Based on Minimum Spanning Tree for Phase Unwrapping
    Zhang Sen
    Zhong Heping
    Tang Jinsong
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 1154 - 1159
  • [5] The Generalized Minimum Spanning Tree Problem:: Polyhedral analysis and branch-and-cut algorithm
    Feremans, C
    Labbé, M
    Laporte, G
    NETWORKS, 2004, 43 (02) : 71 - 86
  • [6] A primal branch-and-cut algorithm for the degree-constrained minimum spanning tree problem
    Behle, Markus
    Juenger, Michael
    Liers, Frauke
    EXPERIMENTAL ALGORITHMS, PROCEEDINGS, 2007, 4525 : 379 - +
  • [7] The Complexity and Algorithm for Minimum Expense Spanning Trees
    Zhan Ning
    Wu Longshu
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 118 - 122
  • [8] A faster deterministic algorithm for minimum spanning trees
    Chazelle, B
    38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, : 22 - 34
  • [9] The min-degree constrained minimum spanning tree problem: Formulations and Branch-and-cut algorithm
    Martinez, Leonardo Conegundes
    da Cunha, Alexandre Salles
    DISCRETE APPLIED MATHEMATICS, 2014, 164 : 210 - 224
  • [10] A fast distributed approximation algorithm for minimum spanning trees
    Khan, Maleq
    Pandurangan, Gopal
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, 4167 : 355 - +