A faster deterministic algorithm for minimum spanning trees

被引:10
|
作者
Chazelle, B [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
关键词
D O I
10.1109/SFCS.1997.646089
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A deterministic algorithm for computing a minimum spanning tree of a connected graph is presented. Its running time is O(m alpha log alpha), where alpha = alpha(m, n) is a functional inverse of Ackermann's function and n (resp. m) is the number of vertices (resp. edges). This improves on the previous, ten-year old bound of (roughly) O(m log log* m).
引用
收藏
页码:22 / 34
页数:13
相关论文
共 50 条
  • [1] Faster Swap Edge Computation in Minimum Diameter Spanning Trees
    Beat Gfeller
    Algorithmica, 2012, 62 : 169 - 191
  • [2] Faster Swap Edge Computation in Minimum Diameter Spanning Trees
    Gfeller, Beat
    ALGORITHMICA, 2012, 62 (1-2) : 169 - 191
  • [3] Faster Swap Edge Computation in Minimum Diameter Spanning Trees
    Gfeller, Beat
    ALGORITHMS - ESA 2008, 2008, 5193 : 454 - 465
  • [4] The Complexity and Algorithm for Minimum Expense Spanning Trees
    Zhan Ning
    Wu Longshu
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 118 - 122
  • [5] Deterministic polylog approximation for minimum communication spanning trees (Extended abstract)
    Peleg, D
    Reshef, E
    AUTOMATA, LANGUAGES AND PROGRAMMING, 1998, 1443 : 670 - 681
  • [6] Novel Deterministic Heuristics for Building Minimum Spanning Trees with Constrained Diameter
    Patvardhan, C.
    Prakash, V. Prem
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 68 - +
  • [7] A faster FPT algorithm for finding spanning trees with many leaves
    Bonsma, PS
    Brueggemann, T
    Woeginger, GJ
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2003, PROCEEDINGS, 2003, 2747 : 259 - 268
  • [8] A fast distributed approximation algorithm for minimum spanning trees
    Khan, Maleq
    Pandurangan, Gopal
    DISTRIBUTED COMPUTING, PROCEEDINGS, 2006, 4167 : 355 - +
  • [9] A parallel algorithm for k-minimum spanning trees
    Ma, J
    Iwama, K
    Gu, QP
    SECOND AIZU INTERNATIONAL SYMPOSIUM ON PARALLEL ALGORITHMS/ARCHITECTURE SYNTHESIS, PROCEEDINGS, 1997, : 384 - 388
  • [10] A table based algorithm for minimum directed spanning trees
    Feng, J.
    2001, Editorial Dept. of Systems Engineering and Electronics (12)