A faster deterministic algorithm for minimum spanning trees

被引:10
|
作者
Chazelle, B [1 ]
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
关键词
D O I
10.1109/SFCS.1997.646089
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A deterministic algorithm for computing a minimum spanning tree of a connected graph is presented. Its running time is O(m alpha log alpha), where alpha = alpha(m, n) is a functional inverse of Ackermann's function and n (resp. m) is the number of vertices (resp. edges). This improves on the previous, ten-year old bound of (roughly) O(m log log* m).
引用
收藏
页码:22 / 34
页数:13
相关论文
共 50 条
  • [31] On generalized minimum spanning trees
    Feremans, C
    Labbé, M
    Laporte, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (02) : 457 - 458
  • [32] On partitioning minimum spanning trees
    Guttmann-Beck, Nili
    Hassin, Refael
    Stern, Michal
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 45 - 54
  • [33] The minimum labeling spanning trees
    Chang, RS
    Leu, SJ
    INFORMATION PROCESSING LETTERS, 1997, 63 (05) : 277 - 282
  • [34] Successive minimum spanning trees
    Janson, Svante
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (01) : 126 - 172
  • [35] The saga of minimum spanning trees
    Mares, Martin
    COMPUTER SCIENCE REVIEW, 2008, 2 (03) : 165 - 221
  • [36] CLUSTERING WITH MINIMUM SPANNING TREES
    Zhou, Yan
    Grygorash, Oleksandr
    Hain, Thomas F.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (01) : 139 - 177
  • [37] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [38] A branch and cut algorithm for minimum spanning trees under conflict constraints
    Phillippe Samer
    Sebastián Urrutia
    Optimization Letters, 2015, 9 : 41 - 55
  • [39] A new algorithm for finding minimum spanning trees with undirected neutrosophic graphs
    Dey, Arindam
    Broumi, Said
    Le Hoang Son
    Bakali, Assia
    Talea, Mohamed
    Smarandache, Florentin
    GRANULAR COMPUTING, 2019, 4 (01) : 63 - 69
  • [40] A note on ultrametric spaces, minimum spanning trees and the topological distance algorithm
    Schäfer J.
    Schäfer, Jörg (jschaefer@fb2.fra-uas.de), 1600, MDPI AG, Postfach, Basel, CH-4005, Switzerland (11):