On partitioning minimum spanning trees

被引:0
|
作者
Guttmann-Beck, Nili [1 ]
Hassin, Refael [2 ]
Stern, Michal [1 ,3 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Yaffo, Israel
[2] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[3] Univ Haifa, Caesarea Rothschild Inst, Haifa, Israel
关键词
Minimum spanning tree;
D O I
10.1016/j.dam.2024.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a set of points in the plane, and T the edge set of a minimum spanning tree of the complete graph induced by V. We prove that partitioning every edge of T into k equal parts, under Mahalanobis-norm, yields a Minimum Spanning Tree on the new set of points. We also prove that partitioning every edge of T in any symmetric way, under the Euclidean norm in 2-dimension space, yields a Minimum Spanning Tree on the new set of points. However, these properties break down under the & ell;1 or & ell;infinity norms. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
下载
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [1] On generalized minimum spanning trees
    Feremans, C
    Labbé, M
    Laporte, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (02) : 457 - 458
  • [2] The minimum labeling spanning trees
    Chang, RS
    Leu, SJ
    INFORMATION PROCESSING LETTERS, 1997, 63 (05) : 277 - 282
  • [3] Successive minimum spanning trees
    Janson, Svante
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (01) : 126 - 172
  • [4] The saga of minimum spanning trees
    Mares, Martin
    COMPUTER SCIENCE REVIEW, 2008, 2 (03) : 165 - 221
  • [5] CLUSTERING WITH MINIMUM SPANNING TREES
    Zhou, Yan
    Grygorash, Oleksandr
    Hain, Thomas F.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (01) : 139 - 177
  • [6] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20
  • [7] Partitioning bispanning graphs into spanning trees
    Baumgart M.
    Mathematics in Computer Science, 2010, 3 (1) : 3 - 15
  • [8] Spanning trees with minimum weighted degrees
    Ghodsi, Mohammad
    Mahini, Hamid
    Mirjalali, Kian
    Gharan, Shayan Oveis
    R., Amin S. Sayedi
    Zadimoghaddam, Morteza
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 113 - 116
  • [9] On Sorting, Heaps, and Minimum Spanning Trees
    Navarro, Gonzalo
    Paredes, Rodrigo
    ALGORITHMICA, 2010, 57 (04) : 585 - 620
  • [10] Increasing the weight of minimum spanning trees
    Frederickson, GN
    SolisOba, R
    PROCEEDINGS OF THE SEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 1996, : 539 - 546