On partitioning minimum spanning trees

被引:0
|
作者
Guttmann-Beck, Nili [1 ]
Hassin, Refael [2 ]
Stern, Michal [1 ,3 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Yaffo, Israel
[2] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[3] Univ Haifa, Caesarea Rothschild Inst, Haifa, Israel
关键词
Minimum spanning tree;
D O I
10.1016/j.dam.2024.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a set of points in the plane, and T the edge set of a minimum spanning tree of the complete graph induced by V. We prove that partitioning every edge of T into k equal parts, under Mahalanobis-norm, yields a Minimum Spanning Tree on the new set of points. We also prove that partitioning every edge of T in any symmetric way, under the Euclidean norm in 2-dimension space, yields a Minimum Spanning Tree on the new set of points. However, these properties break down under the & ell;1 or & ell;infinity norms. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
下载
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [21] Increasing the weight of minimum spanning trees
    Frederickson, GN
    Solis-Oba, R
    JOURNAL OF ALGORITHMS, 1999, 33 (02) : 244 - 266
  • [22] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    APPROXIMATION ALGORITHMS FOR COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2002, 2462 : 175 - 184
  • [23] CUMULATIVE CONSTRUCTION OF MINIMUM SPANNING TREES
    ROGER, JH
    CARPENTE.RG
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1971, 20 (02) : 192 - &
  • [24] On minimum edge ranking spanning trees
    Makino, K
    Uno, Y
    Ibaraki, T
    JOURNAL OF ALGORITHMS, 2001, 38 (02) : 411 - 437
  • [25] Minimum Spanning Trees with Sums of Ratios
    Christopher C. Skiscim
    Susan W. Palocsay
    Journal of Global Optimization, 2001, 19 : 103 - 120
  • [26] Distributed verification of minimum spanning trees
    Amos Korman
    Shay Kutten
    Distributed Computing, 2007, 20 : 253 - 266
  • [27] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2003, 13 (04) : 303 - 316
  • [28] Minimum bounded degree spanning trees
    Goemans, Michel X.
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 273 - 282
  • [29] Balanced partition of minimum spanning trees
    Andersson, M
    Gudmundsson, J
    Levcopoulos, C
    Narasimhan, G
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 26 - 35
  • [30] On Sorting, Heaps, and Minimum Spanning Trees
    Gonzalo Navarro
    Rodrigo Paredes
    Algorithmica, 2010, 57 : 585 - 620