On partitioning minimum spanning trees

被引:0
|
作者
Guttmann-Beck, Nili [1 ]
Hassin, Refael [2 ]
Stern, Michal [1 ,3 ]
机构
[1] Acad Coll Tel Aviv Yaffo, Yaffo, Israel
[2] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[3] Univ Haifa, Caesarea Rothschild Inst, Haifa, Israel
关键词
Minimum spanning tree;
D O I
10.1016/j.dam.2024.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let V be a set of points in the plane, and T the edge set of a minimum spanning tree of the complete graph induced by V. We prove that partitioning every edge of T into k equal parts, under Mahalanobis-norm, yields a Minimum Spanning Tree on the new set of points. We also prove that partitioning every edge of T in any symmetric way, under the Euclidean norm in 2-dimension space, yields a Minimum Spanning Tree on the new set of points. However, these properties break down under the & ell;1 or & ell;infinity norms. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
下载
收藏
页码:45 / 54
页数:10
相关论文
共 50 条
  • [41] RECENT DEVELOPMENTS ON MINIMUM SPANNING TREES
    YAO, AC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A597 - A597
  • [42] Minimum spanning trees and dissimilarity analysis
    Leclerc, B
    ORDINAL AND SYMBOLIC DATA ANALYSIS, 1996, : 215 - 224
  • [43] NOTE ON BISECTING MINIMUM SPANNING TREES
    BOYCE, WM
    GAREY, MR
    JOHNSON, DS
    NETWORKS, 1978, 8 (03) : 187 - 192
  • [44] Balancing minimum spanning trees and multiple-source minimum routing cost spanning trees on metric graphs
    Lin, Chung-Ming
    Tsai, Yin Te
    Tang, Chuan Yi
    INFORMATION PROCESSING LETTERS, 2006, 99 (02) : 64 - 67
  • [45] Minimum spanning tree partitioning algorithm for microaggregation
    Laszlo, M
    Mukherjee, S
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (07) : 902 - 911
  • [46] Balancing minimum spanning trees and shortest-path trees
    Khuller, S.
    Raghavachari, B.
    Young, N.
    Algorithmica (New York), 1995, 14 (04):
  • [47] The minimum number of spanning trees in regular multigraphs
    Pekarek, Jakub
    Sereni, Jean-Sebastien
    Yilma, Zelealem B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):
  • [48] On Family of Graphs with Minimum Number of Spanning Trees
    Zbigniew R. Bogdanowicz
    Graphs and Combinatorics, 2013, 29 : 1647 - 1652
  • [49] Decentralized pricing in minimum cost spanning trees
    Hougaard, Jens Leth
    Moulin, Herve
    Osterdal, Lars Peter
    ECONOMIC THEORY, 2010, 44 (02) : 293 - 306
  • [50] Minimum spanning trees displaying semantic similarity
    Duch, W
    Matykiewicz, P
    INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2005, : 31 - 40