Nonlinear nonhomogeneous periodic problems

被引:0
|
作者
Giuseppina Barletta
Giuseppina D’Aguì
Nikolaos S. Papageorgiou
机构
[1] Università di Reggio Calabria,DICEAM, Facoltà di Ingegneria
[2] Università degli studi di Messina,DICIEAMA
[3] National Technical University,Department of Mathematics
关键词
Constant sign solutions; Extremal solutions; Nodal solutions; Nonlinear maximum principle; Critical groups; 34B15; 34B18; 34C25; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator and a Carathéodory reaction. We show that it has at least three solutions, two of constant sign and the third nodal. In the particular case of the scalar p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p-}$$\end{document}Laplacian and with a parametric reaction of equidiffusive type, we show that three solutions with precise sign exist if the parameter λ>λ^1(p)=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda > \widehat{\lambda}_1(p)=}$$\end{document} the first nonzero eigenvalue of the periodic scalar Laplacian. Finally, in the semilinear case (p=2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(p=2),}$$\end{document} we show that there is a second nodal solution, for a total of four nontrivial solutions all with sign information.
引用
收藏
相关论文
共 50 条
  • [41] Elliptic problems with nonhomogeneous boundary condition and derivatives of nonlinear terms
    Motreanu, Dumitru
    Motreanu, Viorica V.
    BOUNDARY VALUE PROBLEMS, 2014,
  • [42] Infinitely Many Nodal Solutions for Nonlinear Nonhomogeneous Robin Problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ADVANCED NONLINEAR STUDIES, 2016, 16 (02) : 287 - 299
  • [43] Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [44] Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [45] An analytical method for nonlinear and nonhomogeneous boundary value problems of plates
    Mao, Xiao-Ye
    Zheng, Hai-Ting
    Ding, Hu
    Chen, Li-Qun
    NONLINEAR DYNAMICS, 2024, 112 (03) : 1691 - 1711
  • [46] Nonlinear eigenvalue problems for nonhomogeneous Leray-Lions operators
    Abdelwahed, Mohamed
    Chorfi, Nejmeddine
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [47] Elliptic problems with nonhomogeneous boundary condition and derivatives of nonlinear terms
    Dumitru Motreanu
    Viorica V Motreanu
    Boundary Value Problems, 2014
  • [48] Positive solutions to nonlinear nonhomogeneous inclusion problems with dependence on the gradient
    Zeng, Shengda
    Liu, Zhenhai
    Migorski, Stanislaw
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 432 - 448
  • [49] POSITIVE AND NODAL SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS PARAMETRIC NEUMANN PROBLEMS
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [50] Nonlinear, Nonhomogeneous Robin Problems with Indefinite Potential and General Reaction
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03): : 823 - 857