Nonlinear nonhomogeneous periodic problems

被引:0
|
作者
Giuseppina Barletta
Giuseppina D’Aguì
Nikolaos S. Papageorgiou
机构
[1] Università di Reggio Calabria,DICEAM, Facoltà di Ingegneria
[2] Università degli studi di Messina,DICIEAMA
[3] National Technical University,Department of Mathematics
关键词
Constant sign solutions; Extremal solutions; Nodal solutions; Nonlinear maximum principle; Critical groups; 34B15; 34B18; 34C25; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a nonlinear periodic problem driven by a nonhomogeneous differential operator and a Carathéodory reaction. We show that it has at least three solutions, two of constant sign and the third nodal. In the particular case of the scalar p-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p-}$$\end{document}Laplacian and with a parametric reaction of equidiffusive type, we show that three solutions with precise sign exist if the parameter λ>λ^1(p)=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda > \widehat{\lambda}_1(p)=}$$\end{document} the first nonzero eigenvalue of the periodic scalar Laplacian. Finally, in the semilinear case (p=2),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(p=2),}$$\end{document} we show that there is a second nodal solution, for a total of four nontrivial solutions all with sign information.
引用
收藏
相关论文
共 50 条
  • [21] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [22] Nonlinear nonhomogeneous Robin problems with gradient dependent reaction
    Gasinski, Leszek
    Krech, Ireneusz
    Papageorgiou, Nikolaos S.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
  • [23] Nonlinear eigenvalue problems for nonhomogeneous Leray–Lions operators
    Mohamed Abdelwahed
    Nejmeddine Chorfi
    Boundary Value Problems, 2020
  • [24] Positive solutions for nonlinear nonhomogeneous parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    FORUM MATHEMATICUM, 2018, 30 (03) : 553 - 580
  • [25] Nonlinear Nonhomogeneous Obstacle Problems with Multivalued Convection Term
    Shengda Zeng
    Yunru Bai
    Leszek Gasiński
    The Journal of Geometric Analysis, 2022, 32
  • [26] Nonlinear Neumann problems driven by a nonhomogeneous differential operator
    Bisci, Giovanni Molica
    Repovs, Dusan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (01): : 13 - 25
  • [27] Nonlinear nonhomogeneous Dirichlet problems with singular and convection terms
    Papageorgiou, Nikolaos S.
    Zhang, Youpei
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [28] MULTIPLE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS RESONANT COERCIVE PROBLEMS
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (02): : 155 - 178
  • [29] Nonlinear Nonhomogeneous Boundary Value Problems with Competition Phenomena
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (01): : 251 - 298
  • [30] Degenerate triply nonlinear problems with nonhomogeneous boundary conditions
    Ammar, Kaouther
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (03): : 548 - 568