Positive solutions for nonlinear nonhomogeneous parametric Robin problems

被引:29
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Robin boundary condition; nonlinear nonhomogeneous differential operator; nonlinear regularity; nonlinear maximum principle; bifurcation-type result; extremal positive solution; LINEAR ELLIPTIC-EQUATIONS; AMBROSETTI-RABINOWITZ CONDITION; P-LAPLACIAN-TYPE; MULTIPLE SOLUTIONS; LOCAL MINIMIZERS; NODAL SOLUTIONS; BIFURCATION; EXISTENCE; SOBOLEV; SIGN;
D O I
10.1515/forum-2017-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Caratheodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter lambda > 0 approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution u*(A) of the problem, and we investigate the properties of the map lambda -> u*A.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条
  • [1] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [2] Positive Solutions for Nonlinear Nonhomogeneous Robin Problems
    Gasinski, Leszek
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (04): : 435 - 458
  • [3] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    S. Leonardi
    Nikolaos S. Papageorgiou
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [4] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [5] PARAMETRIC NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papaceorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (07) : 1289 - 1310
  • [6] Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [7] Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [8] Positive solutions for a class of nonlinear parametric Robin problems
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Zhang, Youpei
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (01) : 429 - 454
  • [9] Positive solutions for a class of nonlinear parametric Robin problems
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Youpei Zhang
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 429 - 454
  • [10] POSITIVE AND NODAL SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS PARAMETRIC NEUMANN PROBLEMS
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,