Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems

被引:0
|
作者
S. Leonardi
Nikolaos S. Papageorgiou
机构
[1] Università degli Studi di Catania,Dipartimento di Matematica e Informatica
[2] National Technical University,Department of Mathematics
关键词
Nonhomogeneous differential operator; Singular term; -superlinear parametric perturbation; Nonlinear regularity; Bifurcation-type theorem; Minimal positive solutions; Robin boundary condition; 35J92; 35P30;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear Robin problems driven by a nonhomogeneous differential operator and with a reaction that has a singular term and a parametric (p-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p-1)$$\end{document}-superlinear perturbation which need not satisfy the Ambrosetti–Rabinowitz condition. We are looking for positive solutions. Using variational arguments and a suitable truncation and comparison techniques, we prove a bifurcation-type theorem which describes the set of positive solutions as the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda > 0$$\end{document} varies. Also we show the for every admissible value of the parameter λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda >0$$\end{document}, the problem has a smallest solution u¯λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{u}}_{\lambda }$$\end{document} and we determine the monotonicity and continuity properties of the map λ→u¯λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \rightarrow {\bar{u}}_{\lambda }$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [2] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [3] Positive solutions for nonlinear nonhomogeneous parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. FORUM MATHEMATICUM, 2018, 30 (03) : 553 - 580
  • [4] MULTIPLICITY OF SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 601 - 611
  • [5] Existence, nonexistence and multiplicity of positive solutions for nonlinear, nonhomogeneous Neumann problems
    Nikolaos S. Papageorgiou
    Francesca Papalini
    [J]. manuscripta mathematica, 2017, 154 : 257 - 274
  • [6] Existence, nonexistence and multiplicity of positive solutions for nonlinear, nonhomogeneous Neumann problems
    Papageorgiou, Nikolaos S.
    Papalini, Francesca
    [J]. MANUSCRIPTA MATHEMATICA, 2017, 154 (1-2) : 257 - 274
  • [7] Positive Solutions for Nonlinear Nonhomogeneous Robin Problems
    Gasinski, Leszek
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (04): : 435 - 458
  • [8] PARAMETRIC NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papaceorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (07) : 1289 - 1310
  • [9] Multiplicity theorems for nonlinear nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 251 - 289
  • [10] Existence and multiplicity of positive solutions for singular quasilinear problems
    Perera, Kanishka
    Silva, Elves A. B.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 1238 - 1252