Existence, nonexistence and multiplicity of positive solutions for nonlinear, nonhomogeneous Neumann problems

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Papalini, Francesca [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Polytech Univ Marche, Dept Ind Engn & Math Sci, Via Brecce Bianche, I-60131 Ancona, Italy
关键词
LINEAR ELLIPTIC-EQUATIONS; P-LAPLACIAN; EQUIDIFFUSIVE REACTION; LOCAL MINIMIZERS; NODAL SOLUTIONS; CONSTANT-SIGN; LOGISTIC-TYPE; CONCAVE; (P;
D O I
10.1007/s00229-017-0919-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear parametric Neumann problem driven by a nonhomogeneous differential operator and a strictly (p - 1)-sublinear reaction term. We prove a bifurcation-type result establishing the existence of a critical parameter value lambda* > 0 such that for all lambda > lambda* the problem has at least two positive solutions, for lambda = lambda* it has at least one positive solution and for lambda is an element of (0,lambda*) there are no positive solutions. Also, for lambda = lambda* we show that the problem has a smallest positive solution (u) over bar (lambda) and we investigate the continuity and monotonicity properties of the map lambda -> (u) over bar (lambda).
引用
收藏
页码:257 / 274
页数:18
相关论文
共 50 条