Positive solutions for nonlinear nonhomogeneous parametric Robin problems

被引:29
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Robin boundary condition; nonlinear nonhomogeneous differential operator; nonlinear regularity; nonlinear maximum principle; bifurcation-type result; extremal positive solution; LINEAR ELLIPTIC-EQUATIONS; AMBROSETTI-RABINOWITZ CONDITION; P-LAPLACIAN-TYPE; MULTIPLE SOLUTIONS; LOCAL MINIMIZERS; NODAL SOLUTIONS; BIFURCATION; EXISTENCE; SOBOLEV; SIGN;
D O I
10.1515/forum-2017-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Caratheodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter lambda > 0 approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution u*(A) of the problem, and we investigate the properties of the map lambda -> u*A.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条
  • [21] Positive Solutions for Nonlinear Robin Problems with Concave Terms
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Winowski, Krzysztof
    [J]. JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1145 - 1174
  • [22] Multiple solutions with precise sign for nonlinear parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2449 - 2479
  • [23] Multiplicity theorems for nonlinear nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) : 251 - 289
  • [24] Nonlinear nonhomogeneous Robin problems with dependence on the gradient
    Yunru Bai
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    [J]. Boundary Value Problems, 2018
  • [25] Nonlinear nonhomogeneous Robin problems with dependence on the gradient
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. BOUNDARY VALUE PROBLEMS, 2018, : 1 - 24
  • [26] Positive solutions to nonlinear nonhomogeneous inclusion problems with dependence on the gradient
    Zeng, Shengda
    Liu, Zhenhai
    Migorski, Stanislaw
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 432 - 448
  • [27] NONLINEAR, NONHOMOGENEOUS PARAMETRIC NEUMANN PROBLEMS
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (01) : 45 - 69
  • [28] POSITIVE SOLUTIONS FOR PARAMETRIC SEMILINEAR ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. MATHEMATICA SCANDINAVICA, 2017, 121 (02) : 263 - 292
  • [29] EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR ROBIN PROBLEMS WITH GRADIENT DEPENDENCE
    Papageorgiou, Nikolaos S.
    Zhang, Chao
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 739 - 753
  • [30] Parametric nonlinear resonant Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (11) : 2456 - 2480