Positive solutions to nonlinear nonhomogeneous inclusion problems with dependence on the gradient

被引:13
|
作者
Zeng, Shengda [1 ]
Liu, Zhenhai [2 ,3 ]
Migorski, Stanislaw [4 ,5 ]
机构
[1] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Guangxi Univ Nationalities, Guangxi Key Lab Univ Optimizat Control & Engn Cal, Nanning 530006, Guangxi, Peoples R China
[3] Guangxi Univ Nationalities, Coll Sci, Nanning 530006, Guangxi, Peoples R China
[4] Qinzhou Univ, Coll Sci, Qinzhou 535000, Guangxi, Peoples R China
[5] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Nonlinear elliptic inclusion; Nonhomogeneous partial differential operator; Convection multivalued term; Subsolution-supersolution; Positive solution; LINEAR ELLIPTIC-EQUATIONS; VARIATIONAL-INEQUALITIES; EIGENVALUE PROBLEMS; EXISTENCE;
D O I
10.1016/j.jmaa.2018.03.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The goal of the paper is to study a generalized elliptic inclusion problem driven by a nonhomogeneous partial differential operator with the Dirichlet boundary condition and a convection multivalued term. An existence theorem for positive solutions of the problem is established by applying the method of subsolution-supersolution, together with truncation and comparison techniques. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:432 / 448
页数:17
相关论文
共 50 条
  • [1] Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [2] Parameter dependence for the positive solutions of nonlinear, nonhomogeneous Robin problems
    Nikolaos S. Papageorgiou
    Calogero Vetro
    Francesca Vetro
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [3] Positive solutions for nonlinear elliptic problems with dependence on the gradient
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (02) : 1451 - 1476
  • [4] Nonlinear nonhomogeneous Robin problems with dependence on the gradient
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. BOUNDARY VALUE PROBLEMS, 2018, : 1 - 24
  • [5] Nonlinear nonhomogeneous Robin problems with dependence on the gradient
    Yunru Bai
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    [J]. Boundary Value Problems, 2018
  • [6] EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR ROBIN PROBLEMS WITH GRADIENT DEPENDENCE
    Papageorgiou, Nikolaos S.
    Zhang, Chao
    [J]. ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 739 - 753
  • [7] Positive Solutions for Nonlinear Nonhomogeneous Robin Problems
    Gasinski, Leszek
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (04): : 435 - 458
  • [8] EXISTENCE OF SOLUTIONS TO NONHOMOGENEOUS DIRICHLET PROBLEMS WITH DEPENDENCE ON THE GRADIENT
    Bai, Yunru
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [9] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [10] Positive solutions for nonlinear nonhomogeneous parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. FORUM MATHEMATICUM, 2018, 30 (03) : 553 - 580