Positive solutions for a class of nonlinear parametric Robin problems

被引:2
|
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ]
Zhang, Youpei [3 ,4 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[3] Cent South Univ Changsha, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Concave-convex nonlinearities; Positive solutions; Truncation; Nonlinear regularity; Nonlinear maximum principle; Minimal positive solution; EIGENVALUE PROBLEM; LOCAL MINIMIZERS; INDEFINITE; CONCAVE; MULTIPLICITY; (P;
D O I
10.1007/s12215-023-00918-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear Robin problem driven by the p-Laplacian and a parametric concave-convex reaction with the parameter multiplying the convex (superlinear) term. We prove a multiplicity result for positive solutions which is global in the parameter ? > 0 (bifurcation-type theorem). We also show the existence of a minimal positive solution u(?)(*) and determine the monotonicity and continuity properties of the map ? ? u(?)(*)
引用
收藏
页码:429 / 454
页数:26
相关论文
共 50 条
  • [1] Positive solutions for a class of nonlinear parametric Robin problems
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Youpei Zhang
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 429 - 454
  • [2] Positive Solutions for Parametric Nonlinear Nonhomogeneous Robin Problems
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (03): : 285 - 313
  • [3] Positive solutions for nonlinear nonhomogeneous parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. FORUM MATHEMATICUM, 2018, 30 (03) : 553 - 580
  • [4] POSITIVE AND NODAL SOLUTIONS FOR PARAMETRIC NONLINEAR ROBIN PROBLEMS WITH INDEFINITE POTENTIAL
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 6133 - 6166
  • [5] POSITIVE SOLUTIONS FOR NONLINEAR ROBIN PROBLEMS
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [6] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    S. Leonardi
    Nikolaos S. Papageorgiou
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [7] Existence and multiplicity of positive solutions for parametric nonlinear nonhomogeneous singular Robin problems
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (02)
  • [8] Positive Solutions for Nonlinear Nonhomogeneous Robin Problems
    Gasinski, Leszek
    O'Regan, Donal
    Papageorgiou, Nikolaos S.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2015, 34 (04): : 435 - 458
  • [9] POSITIVE SOLUTIONS OF NONLINEAR ROBIN EIGENVALUE PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4913 - 4928
  • [10] Positive solutions for nonlinear Robin problems with convection
    Averna, Diego
    Papageorgiou, Nikolaos S.
    Tornatore, Elisabetta
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (06) : 1907 - 1920