Positive solutions for a class of nonlinear parametric Robin problems

被引:2
|
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ]
Zhang, Youpei [3 ,4 ]
机构
[1] Pedag Univ Cracow, Dept Math, Podchorazych 2, PL-30084 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[3] Cent South Univ Changsha, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
关键词
Concave-convex nonlinearities; Positive solutions; Truncation; Nonlinear regularity; Nonlinear maximum principle; Minimal positive solution; EIGENVALUE PROBLEM; LOCAL MINIMIZERS; INDEFINITE; CONCAVE; MULTIPLICITY; (P;
D O I
10.1007/s12215-023-00918-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a nonlinear Robin problem driven by the p-Laplacian and a parametric concave-convex reaction with the parameter multiplying the convex (superlinear) term. We prove a multiplicity result for positive solutions which is global in the parameter ? > 0 (bifurcation-type theorem). We also show the existence of a minimal positive solution u(?)(*) and determine the monotonicity and continuity properties of the map ? ? u(?)(*)
引用
收藏
页码:429 / 454
页数:26
相关论文
共 50 条
  • [31] POSITIVE SOLUTIONS FOR PARAMETRIC NONLINEAR NEUMANN PROBLEMS WITH COMPETING NONLINEARITIES
    Hou, Chunjuan
    Hu, Shouchuan
    Papageorgiou, N. S.
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (03): : 993 - 1019
  • [32] POSITIVE AND NODAL SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS PARAMETRIC NEUMANN PROBLEMS
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [33] Solutions for parametric double phase Robin problems
    Papageorgiou, Nikolaos S.
    Vetro, Calogero
    Vetro, Francesca
    [J]. ASYMPTOTIC ANALYSIS, 2021, 121 (02) : 159 - 170
  • [34] POSITIVE SOLUTIONS FOR PARAMETRIC NONLINEAR PERIODIC PROBLEMS WITH COMPETING NONLINEARITIES
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [35] BIFURCATION OF POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS ROBIN AND NEUMANN PROBLEMS WITH COMPETING NONLINEARITIES
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (10) : 5003 - 5036
  • [36] Global Multiplicity of Positive Solutions for Nonlinear Robin Problems with an Indefinite Potential Term
    Eylem Öztürk
    Nikolaos S. Papageorgiou
    [J]. Results in Mathematics, 2024, 79
  • [37] Nonexistence of positive solutions for nonlinear parabolic Robin problems and Hardy–Leray inequalities
    Gisèle Ruiz Goldstein
    Jerome A. Goldstein
    Ismail Kömbe
    Reyhan Tellioğlu
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 2927 - 2942
  • [38] Global Multiplicity of Positive Solutions for Nonlinear Robin Problems with an Indefinite Potential Term
    Ozturk, Eylem
    Papageorgiou, Nikolaos S.
    [J]. RESULTS IN MATHEMATICS, 2024, 79 (03)
  • [39] A CLASS OF SINGULARLY PERTURBED NONLINEAR ROBIN PROBLEMS
    赵为礼
    [J]. Acta Mathematica Scientia, 1994, (04) : 438 - 445
  • [40] A CLASS OF SINGULARLY PERTURBED NONLINEAR ROBIN PROBLEMS
    ZHAO, WL
    [J]. ACTA MATHEMATICA SCIENTIA, 1994, 14 (04) : 438 - 445