Generalized fractional integral operators on variable exponent Morrey spaces of an integral form

被引:0
|
作者
T. Ohno
T. Shimomura
机构
[1] Oita University,Faculty of Education
[2] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
Riesz potential; maximal function; Sobolev's inequality; Morrey space; variable exponent; primary 46E30; secondary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the boundedness of generalized fractional integral operators Iρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\rho}$$\end{document} on variable exponent Morrey spaces of an integral form Lp(·),ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^{p(\cdot),\omega}(G)$$\end{document}, where ρ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho(x,r)$$\end{document} and ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega(x,r)$$\end{document}are general functions satisfying certain conditions.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条
  • [41] Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups
    A. Eroglu
    V. S. Guliyev
    J. V. Azizov
    Mathematical Notes, 2017, 102 : 722 - 734
  • [42] Boundedness of fractional oscillatory integral operators and their commutators on generalized Morrey spaces
    Ahmet Eroglu
    Boundary Value Problems, 2013
  • [43] Norm Inequalities for Fractional Integral Operators on Generalized Weighted Morrey Spaces
    Yueshan Wang
    AnalysisinTheoryandApplications, 2017, 33 (02) : 93 - 109
  • [44] Rough Fractional Multilinear Integral Operators on Generalized Weighted Morrey Spaces
    Akbulut, A.
    Hamzayev, V. H.
    Safarov, Z. V.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2016, 6 (02): : 128 - 142
  • [45] Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups
    Eroglu, A.
    Guliyev, V. S.
    Azizov, J. V.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 722 - 734
  • [46] Boundedness of rough fractional multilinear integral operators on generalized Morrey spaces
    Akbulut, Ali
    Hamzayev, Vugar H
    Safarov, Zaman V
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [47] Bilinear fractional integral operators on Morrey spaces
    Qianjun He
    Dunyan Yan
    Positivity, 2021, 25 : 399 - 429
  • [48] FRACTIONAL INTEGRAL OPERATORS ON CENTRAL MORREY SPACES
    Komori-Furuya, Yasuo
    Sato, Enji
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (03): : 801 - 813
  • [49] Bilinear fractional integral operators on Morrey spaces
    He, Qianjun
    Yan, Dunyan
    POSITIVITY, 2021, 25 (02) : 399 - 429
  • [50] Sobolev-type inequalities on variable exponent Morrey spaces of an integral form
    Ohno, Takao
    Shimomura, Tetsu
    RICERCHE DI MATEMATICA, 2022, 71 (01) : 189 - 204