Bilinear fractional integral operators on Morrey spaces

被引:0
|
作者
Qianjun He
Dunyan Yan
机构
[1] Beijing Information Science and Technology University,School of Applied Science
[2] University of Chinese Academy of Sciences,School of Mathematical Sciences
来源
Positivity | 2021年 / 25卷
关键词
Bilinear fractional integral operators; Stein–Weiss inequality; Morrey spaces; 42B35; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a plethora of the boundedness property of Adams type for bilinear fractional integral operators of the form Bα(f,g)(x)=∫Rnf(x-y)g(x+y)|y|n-αdy,0<α<n.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} B_{\alpha }(f,g)(x)=\int _{{\mathbb {R}}^{n}}\frac{f(x-y)g(x+y)}{|y|^{n-\alpha }}dy,\quad 0<\alpha <n.\ \end{aligned}$$\end{document}For 1<t≤s<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<t\le s<\infty $$\end{document}, we prove the non-weighted case through the known Adams type result. And we show that these results of Adams type is optimal. For 0<t≤s<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<t\le s<\infty $$\end{document} and 0<t≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<t\le 1$$\end{document}, we obtain new result of a weighted theory describing Morrey boundedness of above form operators if two weights (v,w→)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(v,\vec {w})$$\end{document} satisfy [v,w→]t,q→/ar,as=supQ,Q′∈DQ⊂Q′|Q||Q′|1-sas|Q′|1r⨍Qvt1-t1-tt∏i=12⨍Q′wi-(qi/a)′1(qi/a)′<∞,0<t<s<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&{[}v,\vec {w}]_{t,\vec {q}/{a}}^{r,as}=\mathop {\sup _{Q,Q^{\prime }\in {\mathscr {D}}}}_{Q\subset Q^{\prime }}\left( \frac{|Q|}{|Q^{\prime }|}\right) ^{\frac{1-s}{as}}|Q^{\prime }|^{\frac{1}{r}}\left( \fint _{Q}v^{\frac{t}{1-t}}\right) ^{\frac{1-t}{t}}\\&\quad \prod _{i=1}^{2}\left( \fint _{Q^{\prime }}w_{i}^{-(q_{i}/a)^{\prime }}\right) ^{\frac{1}{(q_{i}/a)^{\prime }}}<\infty ,\quad 0<t<s<1 \end{aligned}$$\end{document}and [v,w→]t,q→/ar,as:=supQ,Q′∈DQ⊂Q′|Q||Q′|1-asas|Q′|1r⨍Qvt1-t1-tt∏i=12⨍Q′wi-(qi/a)′1(qi/a)′<∞,s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned}&{[}v,\vec {w}]_{t,\vec {q}/{a}}^{r,as}:=\mathop {\sup _{Q,Q^{\prime }\in {\mathscr {D}}}}_{Q\subset Q^{\prime }}\left( \frac{|Q|}{|Q^{\prime }|}\right) ^{\frac{1-as}{as}}|Q^{\prime }|^{\frac{1}{r}}\left( \fint _{Q}v^{\frac{t}{1-t}}\right) ^{\frac{1-t}{t}}\\&\quad \prod _{i=1}^{2}\left( \fint _{Q^{\prime }}w_{i}^{-(q_{i}/a)^{\prime }}\right) ^{\frac{1}{(q_{i}/a)^{\prime }}}<\infty , \quad s\ge 1 \end{aligned}$$\end{document}where ‖v‖L∞(Q)=supQv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert v\Vert _{L^{\infty }(Q)}=\sup _{Q}v$$\end{document} when t=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=1$$\end{document}, a, r, s, t and q→\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vec {q}$$\end{document} satisfy proper conditions. As some applications we formulate a bilinear version of the Olsen inequality, the Fefferman–Stein type dual inequality and the Stein–Weiss inequality on Morrey spaces for fractional integrals.
引用
收藏
页码:399 / 429
页数:30
相关论文
共 50 条
  • [1] Bilinear fractional integral operators on Morrey spaces
    He, Qianjun
    Yan, Dunyan
    [J]. POSITIVITY, 2021, 25 (02) : 399 - 429
  • [2] Boundedness of Bilinear Fractional Integral Operators on Vanishing Generalized Morrey Spaces
    Liu, Yuqin
    Fu, Xing
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2022, 55 (02) : 109 - 123
  • [3] BOUNDEDNESS AND COMPACTNESS OF COMMUTATORS FOR BILINEAR FRACTIONAL INTEGRAL OPERATORS ON MORREY SPACES
    Guo, Q.
    Zhou, J.
    [J]. ANALYSIS MATHEMATICA, 2021, 47 (01) : 81 - 103
  • [4] Boundedness and Compactness of Commutators for Bilinear Fractional Integral Operators on Morrey Spaces
    Q. Guo
    J. Zhou
    [J]. Analysis Mathematica, 2021, 47 : 81 - 103
  • [5] Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces
    Lu, Guanghui
    Tao, Shuangping
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (04)
  • [6] Two classes of bilinear fractional integral operators and their commutators on generalized fractional Morrey spaces
    Guanghui Lu
    Shuangping Tao
    [J]. Journal of Pseudo-Differential Operators and Applications, 2021, 12
  • [7] Morrey spaces and fractional integral operators
    Eridani, A.
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    [J]. EXPOSITIONES MATHEMATICAE, 2009, 27 (03) : 227 - 239
  • [8] Bilinear rough singular integral operators on Morrey spaces
    Salim, Daniel
    Sawano, Yoshihiro
    Zanu, Pebrudal
    [J]. JOURNAL OF ANALYSIS, 2020, 28 (03): : 817 - 825
  • [9] Bilinear rough singular integral operators on Morrey spaces
    Daniel Salim
    Yoshihiro Sawano
    Pebrudal Zanu
    [J]. The Journal of Analysis, 2020, 28 : 817 - 825
  • [10] Necessary and Sufficient Conditions for Boundedness of Commutators of Bilinear Fractional Integral Operators on Morrey Spaces
    Suixin HE
    Jiang ZHOU
    [J]. Journal of Mathematical Research with Applications, 2016, 36 (06) : 711 - 717