Generalized fractional integral operators on variable exponent Morrey spaces of an integral form

被引:0
|
作者
T. Ohno
T. Shimomura
机构
[1] Oita University,Faculty of Education
[2] Hiroshima University,Department of Mathematics, Graduate School of Humanities and Social Sciences
来源
Acta Mathematica Hungarica | 2022年 / 167卷
关键词
Riesz potential; maximal function; Sobolev's inequality; Morrey space; variable exponent; primary 46E30; secondary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the boundedness of generalized fractional integral operators Iρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{\rho}$$\end{document} on variable exponent Morrey spaces of an integral form Lp(·),ω(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}^{p(\cdot),\omega}(G)$$\end{document}, where ρ(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho(x,r)$$\end{document} and ω(x,r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega(x,r)$$\end{document}are general functions satisfying certain conditions.
引用
收藏
页码:201 / 214
页数:13
相关论文
共 50 条