Polar foliations and isoparametric maps

被引:0
|
作者
Marcos M. Alexandrino
机构
[1] Instituto de Matemática e Estatística,
[2] Universidade de São Paulo,undefined
来源
关键词
Singular Riemannian foliations; Polar actions; Polar foliations; Isoparametric maps; Transnormal maps; Primary 53C12; Secondary 57R30;
D O I
暂无
中图分类号
学科分类号
摘要
A singular Riemannian foliation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Σ, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} coincide with the level sets of a smooth map H: M → Σ, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
引用
收藏
页码:187 / 198
页数:11
相关论文
共 50 条