POLAR FOLIATIONS ON QUATERNIONIC PROJECTIVE SPACES

被引:4
|
作者
Dominguez-Vazquez, Miguel [1 ]
Gorodski, Claudio [2 ]
机构
[1] UAM, UC3M, UCM, ICMAT Inst Ciencias Matemat,CSIC, Calle Nicolas Cabrera 13-15,Campus Cantoblanco, Madrid 28049, Spain
[2] Univ Sao Paulo, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会; 欧盟地平线“2020”;
关键词
Polar foliation; singular Riemannian foliation; s-representation; symmetric space; FKM-foliation; homogeneous foliation; quaternionic projective space; DISTINCT PRINCIPAL CURVATURES; COMPACT LIE-GROUPS; ISOPARAMETRIC HYPERSURFACES; SYMMETRIC-SPACES; SPHERES; REPRESENTATIONS; CLASSIFICATION;
D O I
10.2748/tmj/1537495351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify irreducible polar foliations of codimension q on quaternionic projective spaces HPn, for all (n, q) not equal (7, 1). We prove that all irreducible polar foliations of any codimension (resp. of codimension one) on HPn are homogeneous if and only if n + 1 is a prime number (resp. n is even or n = 1). This shows the existence of inhomogeneous examples of codimension one and higher.
引用
收藏
页码:353 / 375
页数:23
相关论文
共 50 条