ISOPARAMETRIC FOLIATIONS ON COMPLEX PROJECTIVE SPACES

被引:0
|
作者
Dominguez-Vazquez, Miguel [1 ]
机构
[1] Inst Matematica Pura & Aplicada, Rio De Janeiro, Brazil
关键词
Isoparametric foliation; polar action; inhomogeneous isoparametric foliation; FKM-foliation; extended Vogan diagram; inner symmetric space; complex projective space; 4 PRINCIPAL CURVATURES; SYMMETRIC-SPACES; POLAR REPRESENTATIONS; HYPERSURFACES; SUBMANIFOLDS; CLASSIFICATION; MULTIPLICITIES; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Irreducible isoparametric foliations of arbitrary codimension q on complex projective spaces CPn are classified, for (q,n) not equal (1, 15). Remarkably, there are noncongruent examples that pull back under the Hopf map to congruent foliations on the sphere. Moreover, there exist many inhomogeneous isoparametric foliations, even of higher codimension. In fact, every irreducible isoparametric foliation on CPn is homogeneous if and only if n + 1 is prime. The main tool developed in this work is a method to study singular Riemannian foliations with closed leaves on complex projective spaces. This method is based on a certain graph that generalizes extended Vogan diagrams of inner symmetric spaces.
引用
收藏
页码:1211 / 1249
页数:39
相关论文
共 50 条
  • [1] MINIMAL SETS OF FOLIATIONS ON COMPLEX PROJECTIVE SPACES
    CAMACHO, C
    NETO, AL
    SAD, P
    PUBLICATIONS MATHEMATIQUES, 1988, (68): : 187 - 203
  • [2] ISOPARAMETRIC FAMILIES ON PROJECTIVE SPACES
    PARK, KS
    MATHEMATISCHE ANNALEN, 1989, 284 (03) : 503 - 513
  • [3] POLAR FOLIATIONS ON QUATERNIONIC PROJECTIVE SPACES
    Dominguez-Vazquez, Miguel
    Gorodski, Claudio
    TOHOKU MATHEMATICAL JOURNAL, 2018, 70 (03) : 353 - 375
  • [4] Transversely product singularities of foliations in projective spaces
    Rosas, Rudy
    COMPTES RENDUS MATHEMATIQUE, 2023, 361 (01) : 1785 - 1787
  • [5] Foliations with a radial Kupka set on projective spaces
    Omegar Calvo-Andrade
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 1071 - 1083
  • [6] Foliations with a radial Kupka set on projective spaces
    Calvo-Andrade, Omegar
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (04): : 1071 - 1083
  • [7] ISOPARAMETRIC FOLIATIONS AND THEIR BUILDINGS
    THORBERGSSON, G
    ANNALS OF MATHEMATICS, 1991, 133 (02) : 429 - 446
  • [8] Isotrivial Unfoldings and Structural Theorems for Foliations on Projective Spaces
    Quallbrunn, Federico
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (03): : 335 - 345
  • [9] Isotrivial Unfoldings and Structural Theorems for Foliations on Projective Spaces
    Federico Quallbrunn
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 335 - 345
  • [10] Codimension one foliations of degree three on projective spaces
    da Costa, Raphael Constant
    Lizarbe, Ruben
    Pereira, Jorge Vitorio
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174