ISOPARAMETRIC FOLIATIONS ON COMPLEX PROJECTIVE SPACES

被引:0
|
作者
Dominguez-Vazquez, Miguel [1 ]
机构
[1] Inst Matematica Pura & Aplicada, Rio De Janeiro, Brazil
关键词
Isoparametric foliation; polar action; inhomogeneous isoparametric foliation; FKM-foliation; extended Vogan diagram; inner symmetric space; complex projective space; 4 PRINCIPAL CURVATURES; SYMMETRIC-SPACES; POLAR REPRESENTATIONS; HYPERSURFACES; SUBMANIFOLDS; CLASSIFICATION; MULTIPLICITIES; SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Irreducible isoparametric foliations of arbitrary codimension q on complex projective spaces CPn are classified, for (q,n) not equal (1, 15). Remarkably, there are noncongruent examples that pull back under the Hopf map to congruent foliations on the sphere. Moreover, there exist many inhomogeneous isoparametric foliations, even of higher codimension. In fact, every irreducible isoparametric foliation on CPn is homogeneous if and only if n + 1 is prime. The main tool developed in this work is a method to study singular Riemannian foliations with closed leaves on complex projective spaces. This method is based on a certain graph that generalizes extended Vogan diagrams of inner symmetric spaces.
引用
收藏
页码:1211 / 1249
页数:39
相关论文
共 50 条
  • [21] Codimension 1 Mukai foliations on complex projective manifolds
    Araujo, Carolina
    Druel, Stephane
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 727 : 191 - 246
  • [22] Inhomogeneous isoparametric hypersurfaces in complex hyperbolic spaces
    Carlos Diaz-Ramos, Jose
    Dominguez-Vazquez, Miguel
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1037 - 1042
  • [23] Flat webs and homogeneous foliations on the complex projective plane
    Bedrouni, Samir
    Marin, David
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2018, 146 (03): : 479 - 516
  • [24] Totally real harmonic foliations on a complex projective space
    Gongcheng Shuxue Xuebao, 4 (19-24):
  • [25] FOLIATIONS ON THE COMPLEX PROJECTIVE PLANE WITH MANY PARABOLIC LEAVES
    BRUNELLA, M
    ANNALES DE L INSTITUT FOURIER, 1994, 44 (04) : 1237 - 1242
  • [26] Total rigidity of polynomial foliations on the complex projective plane
    Ilyashenko Yu.S.
    Proceedings of the Steklov Institute of Mathematics, 2007, 259 (1) : 60 - 72
  • [27] Convex foliations of degree 4 on the complex projective plane
    Samir Bedrouni
    David Marín
    Mathematische Zeitschrift, 2020, 295 : 381 - 394
  • [28] Convex foliations of degree 4 on the complex projective plane
    Bedrouni, Samir
    Marin, David
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (1-2) : 381 - 394
  • [29] CONVEX FOLIATIONS OF DEGREE 5 ON THE COMPLEX PROJECTIVE PLANE
    Bedrouni, Samir
    Marin, David
    PUBLICACIONS MATEMATIQUES, 2021, 65 (02) : 409 - 429
  • [30] Holomorphic Foliations of Degree Four on the Complex Projective Space
    Fernandez-Perez, Arturo
    Bernardes, Vangellis Oliveira Sagnori
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (02):