Polar foliations and isoparametric maps

被引:0
|
作者
Marcos M. Alexandrino
机构
[1] Instituto de Matemática e Estatística,
[2] Universidade de São Paulo,undefined
来源
关键词
Singular Riemannian foliations; Polar actions; Polar foliations; Isoparametric maps; Transnormal maps; Primary 53C12; Secondary 57R30;
D O I
暂无
中图分类号
学科分类号
摘要
A singular Riemannian foliation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} on a complete Riemannian manifold M is called a polar foliation if, for each regular point p, there is an immersed submanifold Σ, called section, that passes through p and that meets all the leaves and always perpendicularly. A typical example of a polar foliation is the partition of M into the orbits of a polar action, i.e., an isometric action with sections. In this article we prove that the leaves of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{F}}$$\end{document} coincide with the level sets of a smooth map H: M → Σ, if M is simply connected. In particular, the orbits of a polar action on a simply connected space are level sets of an isoparametric map. This result extends previous results due to the author and Gorodski, Heintze, Liu and Olmos, Carter and West, and Terng.
引用
收藏
页码:187 / 198
页数:11
相关论文
共 50 条
  • [11] ISOPARAMETRIC FOLIATIONS ON COMPLEX PROJECTIVE SPACES
    Dominguez-Vazquez, Miguel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (02) : 1211 - 1249
  • [12] Singular Riemannian Foliations and Isoparametric Submanifolds
    Gudlaugur Thorbergsson
    Milan Journal of Mathematics, 2010, 78 : 355 - 370
  • [13] Isoparametric foliations and critical sets of eigenfunctions
    Zizhou Tang
    Wenjiao Yan
    Mathematische Zeitschrift, 2017, 286 : 1217 - 1226
  • [14] Ricci curvature of double manifolds via isoparametric foliations
    Peng, ChiaKuei
    Qian, Chao
    ADVANCES IN MATHEMATICS, 2017, 311 : 469 - 480
  • [15] Isoparametric foliations, diffeomorphism groups and exotic smooth structures
    Ge, Jianquan
    ADVANCES IN MATHEMATICS, 2016, 302 : 851 - 868
  • [16] Schoen-Yau-Gromov-Lawson theory and isoparametric foliations
    Tang, Zizhou
    Xie, Yuquan
    Yan, Wenjiao
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2012, 20 (05) : 989 - 1018
  • [17] Isoparametric foliations, a problem of Eells-Lemaire and conjectures of Leung
    Qian, Chao
    Tang, Zizhou
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 : 979 - 1001
  • [18] EQUIVARIANT HARMONIC MAPS INTO THE SPHERE VIA ISOPARAMETRIC MAPS
    XIN, YL
    MANUSCRIPTA MATHEMATICA, 1993, 79 (01) : 49 - 71
  • [19] On Polar Foliations and the Fundamental Group
    Alexandrino, Marcos M.
    RESULTS IN MATHEMATICS, 2011, 60 (1-4) : 213 - 223
  • [20] On the Approximate Polar Curves of Foliations
    Fernandez-Sanchez, Percy
    Garcia Barroso, Evelia R.
    Saravia-Molina, Nancy
    MATHEMATICS, 2023, 11 (03)