Poisson equation;
regularity of solutions;
multiplier space;
35F05;
42B15;
42B35;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The most important result stated in this paper is to show that the solutions of the Poisson equation −Δu = f, where f ∈ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\mathcal{M}
$$\end{document}(Ḣ1(ℝd) → (Ḣ−1(ℝd)) is a complex-valued distribution on ℝd, satisfy the regularity property Dku ∈ \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
\mathcal{M}
$$\end{document}(Ḣ1 → Ḣ−1) for all k, |k| = 2. The regularity of this equation is well studied by Maz’ya and Verbitsky [12] in the case where f belongs to the class of positive Borel measures.
机构:
Shenzhen Univ, Coll Math & Stat, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Guangdong, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Guangdong, Peoples R China
Gong, Huajun
Wang, Changyou
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAShenzhen Univ, Coll Math & Stat, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Guangdong, Peoples R China
Wang, Changyou
Zhang, Xiaotao
论文数: 0引用数: 0
h-index: 0
机构:
South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Zhong Shan Ave West 55, Guangzhou 510631, Peoples R ChinaShenzhen Univ, Coll Math & Stat, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Guangdong, Peoples R China