Regularity of solutions of Poisson’s equation in multiplier spaces

被引:0
|
作者
Djemaïa Bensikaddour
Sadek Gala
Amina Lahmar-Benbernou
机构
[1] University of Mostaganem,Department of Mathematics
来源
关键词
Poisson equation; regularity of solutions; multiplier space; 35F05; 42B15; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
The most important result stated in this paper is to show that the solutions of the Poisson equation −Δu = f, where f ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}(Ḣ1(ℝd) → (Ḣ−1(ℝd)) is a complex-valued distribution on ℝd, satisfy the regularity property Dku ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{M} $$\end{document}(Ḣ1 → Ḣ−1) for all k, |k| = 2. The regularity of this equation is well studied by Maz’ya and Verbitsky [12] in the case where f belongs to the class of positive Borel measures.
引用
收藏
页码:1 / 22
页数:21
相关论文
共 50 条
  • [31] Improved regularity for the p-Poisson equation
    Pimentel, Edgard A.
    Rampasso, Giane C.
    Santos, Makson S.
    NONLINEARITY, 2020, 33 (06) : 3050 - 3061
  • [32] Regularity of the p-Poisson equation in the plane
    Erik Lindgren
    Peter Lindqvist
    Journal d'Analyse Mathématique, 2017, 132 : 217 - 228
  • [33] Regularity of Poisson equation in some logarithmic space
    Jia H.
    Li D.
    Wang L.
    Applied Mathematics-A Journal of Chinese Universities, 2007, 22 (1) : 29 - 36
  • [34] Time Regularity for Local Weak Solutions of the Heat Equation on Local Dirichlet Spaces
    Qi Hou
    Laurent Saloff-Coste
    Potential Analysis, 2024, 60 : 79 - 137
  • [35] Time Regularity for Local Weak Solutions of the Heat Equation on Local Dirichlet Spaces
    Hou, Qi
    Saloff-Coste, Laurent
    POTENTIAL ANALYSIS, 2024, 60 (01) : 79 - 137
  • [36] Boundary Schwarz lemma for solutions to Poisson's equation
    Wang, Xiantao
    Zhu, Jian-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) : 623 - 633
  • [37] On Lipschitz continuity of solutions of hyperbolic Poisson’s equation
    Jiaolong Chen
    Manzi Huang
    Antti Rasila
    Xiantao Wang
    Calculus of Variations and Partial Differential Equations, 2018, 57
  • [38] Discretization of solutions to Poisson’s equation in the Korobov class
    S. S. Kudaibergenov
    S. G. Sabitova
    Computational Mathematics and Mathematical Physics, 2013, 53 : 896 - 907
  • [39] On Lipschitz continuity of solutions of hyperbolic Poisson's equation
    Chen, Jiaolong
    Huang, Manzi
    Rasila, Antti
    Wang, Xiantao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (01)
  • [40] Discretization of solutions to Poisson's equation in the Korobov class
    Kudaibergenov, S. S.
    Sabitova, S. G.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (07) : 896 - 907