A Regularity Criterion for the Navier-Stokes Equations in the Multiplier Spaces

被引:1
|
作者
Zhu, Xiang'ou [1 ,2 ]
机构
[1] Wenzhou Univ, Coll Phys & Elect Informat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[2] Key Lab Low Voltage Apparat Intellectual Technol, Wenzhou 325035, Peoples R China
关键词
WEAK SOLUTIONS; SCHRODINGER OPERATOR; PRESSURE; TERMS; BOUNDEDNESS;
D O I
10.1155/2012/682436
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit a regularity condition concerning the pressure gradient for the Navier-Stokes equations in a special class. It is shown that if the pressure gradient belongs to L-2/(2 r) ((0, T); M(H-r (R-3) -> H-r (R-3))), where M(H-r (R-3) -> H-r (R-3)) is the multipliers between Sobolev spaces whose definition is given later for 0 < r < 1, then the Leray-Hopf weak solution to the Navier-Stokes equations is actually regular.
引用
收藏
页数:7
相关论文
共 50 条