A regularity criterion for the Navier-Stokes equations

被引:31
|
作者
Bae, Hyeong-Ohk [1 ]
Choe, Hi Jun
机构
[1] Ajou Univ, Dept Math, Suwon 443749, Gyeonggi Do, South Korea
[2] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
Navier-Stokes; Prodi-Ohyama-Serrin condition; regularity; two-component;
D O I
10.1080/03605300701257500
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a weak solution u = (u(1), u(2), u(3)) to the Navier-Stokes equations is strong, if any two components of u satisfy Prodi-Ohyama-Serrin's criterion. As a local regularity criterion, we prove u is bounded locally if any two components of the velocity lie in L-6,L-infinity.
引用
收藏
页码:1173 / 1187
页数:15
相关论文
共 50 条