An Anisotropic Partial Regularity Criterion for the Navier-Stokes Equations

被引:10
|
作者
Kukavica, Igor [1 ]
Rusin, Walter [2 ]
Ziane, Mohammed [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
SUITABLE WEAK SOLUTIONS; PRESSURE; PROOF;
D O I
10.1007/s00021-016-0278-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we address the partial regularity of suitable weak solutions of the incompressible Navier-Stokes equations. We prove an interior regularity criterion involving only one component of the velocity. Namely, if (u, p) is a suitable weak solution and a certain scale-invariant quantity involving only u(3) is small on a space-time cylinder Q*(r)(x(0), t(0)), then u is regular at (x(0), t(0)).
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条