On partial regularity for the Navier-Stokes equations

被引:34
|
作者
Kukavica, Igor [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
Navier-Stokes equations; Navier-Stokes equation; partial regularity; singular set; Hausdorff dimension;
D O I
10.3934/dcds.2008.21.717
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the partial regularity of suitable weak solutions of the Navier-Stokes equations in a domain D. We prove that the parabolic Hausdorff dimension of space-time singularities in D is less than or equal to 1 provided the force f satisfies f is an element of L-2(D). Our argument simplifies the proof of a classical result of Caffarelli, Kohn, and Nirenberg, who proved the partial regularity under the assumption f is an element of L5/2+delta where delta > 0.
引用
收藏
页码:717 / 728
页数:12
相关论文
共 50 条