The covering radii of a class of binary cyclic codes and some BCH codes

被引:0
|
作者
Selçuk Kavut
Seher Tutdere
机构
[1] Balıkesir University,Department of Computer Engineering
[2] Gebze Technical University,Department of Mathematics
来源
关键词
Cyclic code; BCH code; Covering radius; Finite field; Polynomial equations; 94B15; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
In 2003, Moreno and Castro proved that the covering radius of a class of primitive cyclic codes over the finite field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document} having minimum distance 5 (resp. 7) is 3 (resp. 5). We here give a generalization of this result as follows: the covering radius of a class of primitive cyclic codes over F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document} with minimum distance greater than or equal to r+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+2$$\end{document} is r, where r is any odd integer. Moreover, we prove that the primitive binary e-error correcting BCH codes of length 2f-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^f-1$$\end{document} have covering radii 2e-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2e-1$$\end{document} for an improved lower bound of f.
引用
收藏
页码:317 / 325
页数:8
相关论文
共 50 条
  • [31] A class of binary cyclic codes and sequence families
    Hua Liang
    Wenbing Chen
    Yuansheng Tang
    Journal of Applied Mathematics and Computing, 2017, 53 : 733 - 746
  • [32] A class of binary cyclic codes with optimal parameters
    Kaiqiang Liu
    Qi Wang
    Haode Yan
    Cryptography and Communications, 2022, 14 : 663 - 675
  • [33] A class of binary cyclic codes with five weights
    ChunLei Li
    XiangYong Zeng
    Lei Hu
    Science China Mathematics, 2010, 53 : 3279 - 3286
  • [34] A class of binary cyclic codes and sequence families
    Liang, Hua
    Chen, Wenbing
    Tang, Yuansheng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 733 - 746
  • [35] A class of binary cyclic codes with five weights
    LI ChunLei 1
    2 The State Key Laboratory of Information Security
    Science China Mathematics, 2010, 53 (12) : 3279 - 3286
  • [36] A Class of Binary Cyclic Codes and Their Weight Distributions
    He, Chao
    Luo, Rong
    Yang, Mei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (03) : 634 - 637
  • [37] A class of binary cyclic codes with five weights
    Li ChunLei
    Zeng XiangYong
    Hu Lei
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3279 - 3286
  • [38] A Class of Binary Cyclic Codes with Four Weights
    Luo, Rong
    Wei, Long
    Cheng, Feng
    Du, Xiaoni
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (04): : 965 - 968
  • [39] A class of binary cyclic codes with optimal parameters
    Liu, Kaiqiang
    Wang, Qi
    Yan, Haode
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (03): : 663 - 675
  • [40] PARALLEL DECODING OF BINARY BCH CODES
    HWANG, T
    ELECTRONICS LETTERS, 1991, 27 (24) : 2223 - 2225