The covering radii of a class of binary cyclic codes and some BCH codes

被引:0
|
作者
Selçuk Kavut
Seher Tutdere
机构
[1] Balıkesir University,Department of Computer Engineering
[2] Gebze Technical University,Department of Mathematics
来源
关键词
Cyclic code; BCH code; Covering radius; Finite field; Polynomial equations; 94B15; 94B65;
D O I
暂无
中图分类号
学科分类号
摘要
In 2003, Moreno and Castro proved that the covering radius of a class of primitive cyclic codes over the finite field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document} having minimum distance 5 (resp. 7) is 3 (resp. 5). We here give a generalization of this result as follows: the covering radius of a class of primitive cyclic codes over F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_2$$\end{document} with minimum distance greater than or equal to r+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r+2$$\end{document} is r, where r is any odd integer. Moreover, we prove that the primitive binary e-error correcting BCH codes of length 2f-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^f-1$$\end{document} have covering radii 2e-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2e-1$$\end{document} for an improved lower bound of f.
引用
下载
收藏
页码:317 / 325
页数:8
相关论文
共 50 条
  • [41] On the nonperiodic cyclic equivalence classes of Hamming codes and BCH codes
    Fu, FW
    Shen, SY
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 94 (02) : 205 - 209
  • [42] INVERSIONLESS DECODING OF BINARY BCH CODES
    BURTON, HO
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1971, 17 (04) : 464 - +
  • [43] SOME BCH CODES ARE OPTIMUM
    BELL, DA
    LAXTON, R
    ELECTRONICS LETTERS, 1975, 11 (14) : 296 - 297
  • [44] Decoding algoritmi for binary BCH codes
    Chr, CL
    Su, SL
    Wu, SW
    Proceedings of the IASTED International Conference Communication Systems and Networks, 2004, : 254 - 258
  • [45] Binary primitive LCD BCH codes
    Xinmei Huang
    Qin Yue
    Yansheng Wu
    Xiaoping Shi
    Jerod Michel
    Designs, Codes and Cryptography, 2020, 88 : 2453 - 2473
  • [46] Improving the upper bounds on the covering radii of binary Reed-Muller codes
    Carlet, Claude
    Mesnager, Sihem
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 162 - 173
  • [47] Optimized algorithms for binary BCH codes
    Yin, Min
    Xie, Menwang
    Yi, Bo
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1552 - 1555
  • [48] SOME OPTIMAL CODES FROM ALGEBRAIC-GEOMETRY AND THEIR COVERING RADII
    JANWA, H
    EUROPEAN JOURNAL OF COMBINATORICS, 1990, 11 (03) : 249 - 266
  • [49] Some Nonprimitive BCH Codes and Related Quantum Codes
    Liu, Yang
    Li, Ruihu
    Guo, Guanmin
    Wang, Junli
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (12) : 7829 - 7839
  • [50] Sum-Rank BCH Codes and Cyclic-Skew-Cyclic Codes
    Martinez-Penas, Umberto
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5149 - 5167