A class of binary cyclic codes with five weights

被引:0
|
作者
ChunLei Li
XiangYong Zeng
Lei Hu
机构
[1] Hubei University,Faculty of Mathematics and Computer Science
[2] Graduate School of Chinese Academy of Sciences,The State Key Laboratory of Information Security
来源
Science China Mathematics | 2010年 / 53卷
关键词
cyclic code; Niho exponent; exponential sum; Pless power moment identity; weight distribution; 94A60; 94B15; 06E30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the dual code of the binary cyclic code of length 2n − 1 with three zeros α, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ^{t_1 } $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \alpha ^{t_2 } $$\end{document} is proven to have five nonzero Hamming weights in the case that n ⩾ 4 is even and t1 = 2n/2 + 1, t2 = 2n−1 − 2n/2−1 + 1 or 2n/2 + 3, where α is a primitive element of the finite field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathbb{F}_{2^n } $$\end{document}. The dual code is a divisible code of level n/2 −1, and its weight distribution is also completely determined. When n = 4, the dual code satisfies Ward’s bound.
引用
收藏
页码:3279 / 3286
页数:7
相关论文
共 50 条
  • [1] A class of binary cyclic codes with five weights
    Li ChunLei
    Zeng XiangYong
    Hu Lei
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (12) : 3279 - 3286
  • [2] A class of binary cyclic codes with five weights
    LI ChunLei 1
    2 The State Key Laboratory of Information Security
    Science China Mathematics, 2010, 53 (12) : 3279 - 3286
  • [3] A Class of Binary Cyclic Codes with Four Weights
    Luo, Rong
    Wei, Long
    Cheng, Feng
    Du, Xiaoni
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (04): : 965 - 968
  • [4] On binary cyclic codes with few weights
    Hollmann, HDL
    Xiang, Q
    FINITE FIELDS AND APPLICATIONS, 2001, : 251 - 275
  • [5] On the weights of binary irreducible cyclic codes
    Aubry, Yves
    Langevin, Philippe
    CODING AND CRYPTOGRAPHY, 2006, 3969 : 46 - 54
  • [6] A Class of Linear Codes with Three and Five Weights
    DU Xiaoni
    LI Xiaodan
    WAN Yunqi
    Chinese Journal of Electronics, 2019, 28 (03) : 457 - 461
  • [7] A Class of Linear Codes with Three and Five Weights
    Du Xiaoni
    Li Xiaodan
    Wan Yunqi
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (03) : 457 - 461
  • [8] A Class of Binary Linear Codes With at Most Three Weights
    Heng, Ziling
    Yue, Qin
    IEEE COMMUNICATIONS LETTERS, 2015, 19 (09) : 1488 - 1491
  • [9] A class of binary cyclic codes with optimal parameters
    Kaiqiang Liu
    Qi Wang
    Haode Yan
    Cryptography and Communications, 2022, 14 : 663 - 675
  • [10] A class of binary cyclic codes and sequence families
    Hua Liang
    Wenbing Chen
    Yuansheng Tang
    Journal of Applied Mathematics and Computing, 2017, 53 : 733 - 746