Time distribution and loss of scaling in granular flow

被引:0
|
作者
B. Tadić
机构
[1] Jozef Stefan Institute,
[2] P.O. Box 3000,undefined
[3] 1001-Ljubljana,undefined
[4] Slovenia,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 1999年 / 7卷
关键词
PACS. 81.05.Rm Porous materials; granular materials[:AND:] 64.60.Lx Self-organized criticality; avalanche effect - 02.60.Cb Numerical simulation; solution of equations;
D O I
暂无
中图分类号
学科分类号
摘要
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document},in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is related to directed percolation threshold in d=3. Distributions of avalanche durations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition.
引用
收藏
页码:619 / 625
页数:6
相关论文
共 50 条
  • [41] The angle of internal friction as a measure of work loss in granular material flow
    Zegzulka, Jiri
    POWDER TECHNOLOGY, 2013, 233 : 347 - 353
  • [42] Granular flow in pebble-bed nuclear reactors: Scaling, dust generation, and stress
    Rycroft, Chris H.
    Dehbi, Abdel
    Lind, Terttaliisa
    Guentay, Salih
    NUCLEAR ENGINEERING AND DESIGN, 2013, 265 : 69 - 84
  • [43] Small-time scaling Behavior of TCP flow
    Lin, Qingjia
    Chen, Di
    Sun, Jiande
    Liu, Yuncai
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 2091 - 2095
  • [44] RESIDENCE TIME DISTRIBUTION ANALYSIS OF GRANULAR MATERIAL IN ROTARY KILNS
    Jie, Haozhi
    Herz, F.
    4TH THERMAL AND FLUIDS ENGINEERING CONFERENCE, ASTFE 2019, 2019,
  • [45] Cover-time distribution of random processes in granular gases
    Cheng, Ke
    Dong, Jia-Qi
    Huang, Liang
    Yang, Lei
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [46] Internal length and time scales in a simple shear granular flow
    Shen, HH
    Sankaran, B
    PHYSICAL REVIEW E, 2004, 70 (05):
  • [47] Nonlinear Time Series Analysis of Avalanching Granular Flow Data
    Aldrich, Chris
    Olivier, Jacques
    IFAC PAPERSONLINE, 2019, 52 (14): : 237 - 242
  • [48] Multiple-Time Scaling and Universal Behavior of the Earthquake Interevent Time Distribution
    Bottiglieri, M.
    de Arcangelis, L.
    Godano, C.
    Lippiello, E.
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [49] Distribution nonuniformity of flow rate in a model reactor with stationary granular layer
    Gremyachkin, V.M.
    Dement'ev, V.V.
    Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 1994, 28 (02): : 99 - 103
  • [50] Velocity Distribution and Cumulants in the Unsteady Uniform Longitudinal Flow of a Granular Gas
    Astillero, Antonio
    Santos, Andres
    28TH INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS 2012, VOLS. 1 AND 2, 2012, 1501 : 985 - 992