Time distribution and loss of scaling in granular flow

被引:0
|
作者
B. Tadić
机构
[1] Jozef Stefan Institute,
[2] P.O. Box 3000,undefined
[3] 1001-Ljubljana,undefined
[4] Slovenia,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 1999年 / 7卷
关键词
PACS. 81.05.Rm Porous materials; granular materials[:AND:] 64.60.Lx Self-organized criticality; avalanche effect - 02.60.Cb Numerical simulation; solution of equations;
D O I
暂无
中图分类号
学科分类号
摘要
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document},in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is related to directed percolation threshold in d=3. Distributions of avalanche durations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition.
引用
收藏
页码:619 / 625
页数:6
相关论文
共 50 条
  • [21] Granular flows in a rotating drum:: the scaling law between velocity and thickness of the flow
    Felix, G.
    Falk, V.
    D'Ortona, U.
    EUROPEAN PHYSICAL JOURNAL E, 2007, 22 (01): : 25 - 31
  • [22] Granular flows in a rotating drum: the scaling law between velocity and thickness of the flow
    G. Félix
    V. Falk
    U. D'Ortona
    The European Physical Journal E, 2007, 22 : 25 - 31
  • [23] Scaling relations for granular flow in quasi-two-dimensional rotating cylinders
    Orpe, AV
    Khakhar, DV
    PHYSICAL REVIEW E, 2001, 64 (03): : 13 - 313021
  • [24] Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow
    Mitarai, N
    Nakanishi, H
    PHYSICAL REVIEW LETTERS, 2005, 94 (12)
  • [25] Velocity distribution and scaling properties of wall bounded flow
    Zhao-cun Liu
    Wei-jia Fan
    Journal of Zhejiang University-SCIENCE A, 2010, 11 : 505 - 510
  • [27] Velocity distribution and scaling properties of wall bounded flow
    Liu, Zhao-cun
    Fan, Wei-jia
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2010, 11 (07): : 505 - 510
  • [28] Energy loss as the origin of a universal scaling law of the elliptic flow
    Carlota Andrés
    Mikhail Braun
    Carlos Pajares
    The European Physical Journal A, 2017, 53
  • [29] Energy loss as the origin of a universal scaling law of the elliptic flow
    Andres, Carlota
    Braun, Mikhail
    Pajares, Carlos
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (03):
  • [30] Dynamics of the solar granulation - On the time variation of the granular flow
    Nesis, A
    Hammer, R
    Roth, M
    Schleicher, H
    Soltau, D
    Staiger, J
    SOLAR PHYSICS, 2001, 200 (1-2) : 11 - 22