Time distribution and loss of scaling in granular flow

被引:0
|
作者
B. Tadić
机构
[1] Jozef Stefan Institute,
[2] P.O. Box 3000,undefined
[3] 1001-Ljubljana,undefined
[4] Slovenia,undefined
来源
The European Physical Journal B - Condensed Matter and Complex Systems | 1999年 / 7卷
关键词
PACS. 81.05.Rm Porous materials; granular materials[:AND:] 64.60.Lx Self-organized criticality; avalanche effect - 02.60.Cb Numerical simulation; solution of equations;
D O I
暂无
中图分类号
学科分类号
摘要
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document},in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is related to directed percolation threshold in d=3. Distributions of avalanche durations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition.
引用
收藏
页码:619 / 625
页数:6
相关论文
共 50 条
  • [31] Dynamics of the solar granulation – On the Time Variation of the Granular Flow
    A. Nesis
    R. Hammer
    M. Roth
    H. Schleicher
    D. Soltau
    J. Staiger
    Solar Physics, 2001, 200 : 11 - 22
  • [32] Critical Scaling of Granular Rheology
    Hatano, Takahiro
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2010, (184): : 143 - 152
  • [33] Scaling properties of granular materials
    Pöschel, T.
    Saluena, C.
    Schwager, T.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 I): : 1 - 011308
  • [34] Granular matter and the scaling laws
    Wang, Guang-Qian
    Sun, Qi-Cheng
    Gongcheng Lixue/Engineering Mechanics, 2009, 26 (SUPPL. 2): : 1 - 7
  • [35] Velocity distribution and the effect of wall roughness in granular Poiseuille flow
    Vijayakumar, K. C.
    Alam, Meheboob
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [36] Shear Profiles and Velocity Distribution in Dense Shear Granular Flow
    Wang Deng-Ming
    Zhou You-He
    CHINESE PHYSICS LETTERS, 2009, 26 (02)
  • [37] Velocity distribution for a two-dimensional sheared granular flow
    Bose, M
    Kumaran, V
    PHYSICAL REVIEW E, 2004, 69 (06):
  • [38] Velocity distribution function for a dilute granular material in shear flow
    Kumaran, V
    JOURNAL OF FLUID MECHANICS, 1997, 340 : 319 - 341
  • [39] Velocity distribution function for a dilute granular material in shear flow
    Dept Chemical Engineering, Indian Inst Sci, Balgalore 560 012, India
    Journal of Fluid Mechanics, 1997, 340 : 319 - 341
  • [40] Heterogeneity of flow rate distribution in the devices with fixed granular layer
    Gremyachkin, V.M.
    Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 1994, 28 (03): : 212 - 216