Time distribution and loss of scaling in granular flow

被引:0
|
作者
B. Tadić
机构
[1] Jozef Stefan Institute,
[2] P.O. Box 3000,undefined
[3] 1001-Ljubljana,undefined
[4] Slovenia,undefined
关键词
PACS. 81.05.Rm Porous materials; granular materials[:AND:] 64.60.Lx Self-organized criticality; avalanche effect - 02.60.Cb Numerical simulation; solution of equations;
D O I
暂无
中图分类号
学科分类号
摘要
Two cellular automata models with directed mass flow and internal time scales are studied by numerical simulations. Relaxation rules are a combination of probabilistic critical height (probability of toppling p) and deterministic critical slope processes with internal correlation time tc equal to the avalanche lifetime, in model A, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document},in model B. In both cases nonuniversal scaling properties of avalanche distributions are found for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is related to directed percolation threshold in d=3. Distributions of avalanche durations for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are studied in detail, exhibiting multifractal scaling behavior in model A, and finite size scaling behavior in model B, and scaling exponents are determined as a function of p. At \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} a phase transition to noncritical steady state occurs. Due to difference in the relaxation mechanisms, avalanche statistics at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} approaches the parity conserving universality class in model A, and the mean-field universality class in model B. We also estimate roughness exponent at the transition.
引用
收藏
页码:619 / 625
页数:6
相关论文
共 50 条
  • [1] Time distribution and loss of scaling in granular flow
    Tadic, B
    EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (04): : 619 - 625
  • [2] Scaling Laws in Granular Flow and Pedestrian Flow
    Chen, Shumiao
    Alonso-Marroquin, Fernando
    Busch, Jonathan
    Cruz Hidalgo, Raul
    Sathianandan, Charmila
    Ramirez-Gomez, Alvaro
    Mora, Peter
    POWDERS AND GRAINS 2013, 2013, 1542 : 157 - 160
  • [3] SCALING LAWS FOR RAPID GRANULAR FLOW
    TURNER, MC
    WOODCOCK, LV
    POWDER TECHNOLOGY, 1990, 60 (01) : 47 - 60
  • [4] Scaling probability distribution of granular chains in two dimensions
    Wang, Guan
    Zheng, Ning
    Wen, Pingping
    Li, Liangsheng
    Shi, Qingfan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 407 : 192 - 197
  • [5] Breakdown of Scaling and Friction Weakening in Intermittent Granular Flow
    Baldassarri, A.
    Annunziata, M. A.
    Gnoli, A.
    Pontuale, G.
    Petri, A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Forced flow of granular media: Breakdown of the Beverloo scaling
    Madrid, Marcos A.
    Darias, J. R.
    Pugnaloni, Luis A.
    EPL, 2018, 123 (01)
  • [7] Breakdown of Scaling and Friction Weakening in Intermittent Granular Flow
    A. Baldassarri
    M. A. Annunziata
    A. Gnoli
    G. Pontuale
    A. Petri
    Scientific Reports, 9
  • [8] Scaling factors in granular flow - analysis of experimental and simulations results
    Laurent, B. F. C.
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (13) : 4138 - 4146
  • [9] Granular flow down an inclined plane: Bagnold scaling and rheology
    Silbert, L.E.
    Ertas¸, D.
    Grest, G.S.
    Halsey, T.C.
    Levine, D.
    Plimpton, S.J.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (5 I): : 1 - 051302
  • [10] Plug flow and the breakdown of Bagnold scaling in cohesive granular flows
    Brewster, R
    Grest, GS
    Landry, JW
    Levine, AJ
    PHYSICAL REVIEW E, 2005, 72 (06):