Bias-corrected and robust estimation of the bivariate stable tail dependence function

被引:0
|
作者
Mikael Escobar-Bach
Yuri Goegebeur
Armelle Guillou
Alexandre You
机构
[1] University of Southern Denmark,Department of Mathematics and Computer Science
[2] Avancée,Institut Recherche Mathématique
[3] UMR 7501,Société Générale Insurance – Sogessur
[4] Université de Strasbourg et CNRS,undefined
[5] Direction Technique,undefined
来源
TEST | 2017年 / 26卷
关键词
Multivariate extreme value statistics; Stable tail dependence function; Robustness; Bias-correction; 62G05; 62G20; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
The stable tail dependence function gives a full characterisation of the extremal dependence between two or more random variables. In this paper, we propose an estimator for this function which is robust against outliers in the sample. The estimator is derived from a bivariate second-order tail model together with a proper transformation of the bivariate observations, and its asymptotic properties are studied under some suitable regularity conditions. Our estimation procedure depends on two parameters: α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, which controls the trade-off between efficiency and robustness of the estimator, and a second-order parameter τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which can be replaced by a fixed value or by an estimate. In case where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} has been replaced by the true value or by an external consistent estimator, our robust estimator is asymptotically unbiased, whereas in case where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is mis-specified, one loses this property, but still our estimator performs quite well with respect to bias. The finite sample performance of our robust and bias-corrected estimator of the stable tail dependence function is examined on a simulation study involving uncontaminated and contaminated samples. In particular, its behavior is illustrated for different values of the pair (α,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \tau )$$\end{document} and is compared with alternative estimators from the extreme value literature.
引用
收藏
页码:284 / 307
页数:23
相关论文
共 50 条
  • [11] Bias-corrected estimation of panel vector autoregressions
    Dhaene, Geert
    Jochmans, Koen
    ECONOMICS LETTERS, 2016, 145 : 98 - 103
  • [12] Bias-corrected geometric-type estimators of the tail index
    Brito, Margarida
    Cavalcante, Laura
    Moreira Freitas, Ana Cristina
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (21)
  • [13] Closed-form and bias-corrected estimators for the bivariate gamma distribution
    Zhao, Jun
    Jang, Yu-Hyeong
    Kim, Hyoung-Moon
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 191
  • [14] Bias-corrected estimation in dynamic panel data models
    Bun, MJG
    Carree, MA
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2005, 23 (02) : 200 - 210
  • [15] Bias-corrected estimation for speculative bubbles in stock prices
    Kruse, Robinson
    Kaufmann, Hendrik
    Wegener, Christoph
    ECONOMIC MODELLING, 2018, 73 : 354 - 364
  • [16] Croon's Bias-Corrected Estimation of Latent Interactions
    Cox, Kyle
    Kelcey, Benjamin
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2021, 28 (06) : 863 - 874
  • [17] Bias-corrected confidence intervals for wildlife abundance estimation
    Mack, YP
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (07) : 1107 - 1122
  • [18] Bias-Corrected Estimation of Price Impact in Securities Litigation
    Dove, Taylor
    Heath, Davidson
    Heaton, J. B.
    AMERICAN LAW AND ECONOMICS REVIEW, 2019, 21 (01) : 184 - 208
  • [19] Bias-corrected maximum likelihood estimation for the beta distribution
    Cordeiro, GM
    DaRocha, EC
    DaRocha, JGC
    CribariNeto, F
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (01) : 21 - 35
  • [20] Robust estimation and bias-corrected empirical likelihood in generalized linear models with right censored data
    Xue, Liugen
    Xie, Junshan
    Yang, Xiaohui
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (11) : 2197 - 2213