Bias-corrected and robust estimation of the bivariate stable tail dependence function

被引:0
|
作者
Mikael Escobar-Bach
Yuri Goegebeur
Armelle Guillou
Alexandre You
机构
[1] University of Southern Denmark,Department of Mathematics and Computer Science
[2] Avancée,Institut Recherche Mathématique
[3] UMR 7501,Société Générale Insurance – Sogessur
[4] Université de Strasbourg et CNRS,undefined
[5] Direction Technique,undefined
来源
TEST | 2017年 / 26卷
关键词
Multivariate extreme value statistics; Stable tail dependence function; Robustness; Bias-correction; 62G05; 62G20; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
The stable tail dependence function gives a full characterisation of the extremal dependence between two or more random variables. In this paper, we propose an estimator for this function which is robust against outliers in the sample. The estimator is derived from a bivariate second-order tail model together with a proper transformation of the bivariate observations, and its asymptotic properties are studied under some suitable regularity conditions. Our estimation procedure depends on two parameters: α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, which controls the trade-off between efficiency and robustness of the estimator, and a second-order parameter τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, which can be replaced by a fixed value or by an estimate. In case where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} has been replaced by the true value or by an external consistent estimator, our robust estimator is asymptotically unbiased, whereas in case where τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is mis-specified, one loses this property, but still our estimator performs quite well with respect to bias. The finite sample performance of our robust and bias-corrected estimator of the stable tail dependence function is examined on a simulation study involving uncontaminated and contaminated samples. In particular, its behavior is illustrated for different values of the pair (α,τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha , \tau )$$\end{document} and is compared with alternative estimators from the extreme value literature.
引用
收藏
页码:284 / 307
页数:23
相关论文
共 50 条
  • [21] Local Estimation of the Conditional Stable Tail Dependence Function
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    SCANDINAVIAN JOURNAL OF STATISTICS, 2018, 45 (03) : 590 - 617
  • [22] Bias-corrected heteroscedasticity robust covariance matrix (sandwich) estimators
    Qian, LF
    Wang, SJ
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2001, 70 (02) : 161 - 174
  • [23] Bias-corrected quantile regression estimation of censored regression models
    Cizek, P.
    Sadikoglu, S.
    STATISTICAL PAPERS, 2018, 59 (01) : 215 - 247
  • [24] Bias-corrected variance components estimation of Partial EIV model
    Wang L.
    Wen G.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (04): : 412 - 421
  • [25] Bias-corrected optical flow estimation for road vehicle tracking
    Nagel, HH
    Haag, M
    SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, : 1006 - 1011
  • [26] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    Statistical Papers, 2018, 59 : 215 - 247
  • [27] A note on bias-corrected estimation in dynamic panel data models
    Juodis, Arturas
    ECONOMICS LETTERS, 2013, 118 (03) : 435 - 438
  • [28] Bias-corrected estimation of noncentrality parameters of covariance structure models
    Raykov, T
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2005, 12 (01) : 120 - 129
  • [29] Bias-corrected estimation for GI0 regression with applications
    Sousa, M. F. S. S.
    Vasconcelos, J. M.
    Nascimento, A. D. C.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2025,
  • [30] Estimation of the coefficient of tail dependence in bivariate extremes
    Peng, L
    STATISTICS & PROBABILITY LETTERS, 1999, 43 (04) : 399 - 409