Bias-corrected maximum likelihood estimation for the beta distribution

被引:15
|
作者
Cordeiro, GM [1 ]
DaRocha, EC [1 ]
DaRocha, JGC [1 ]
CribariNeto, F [1 ]
机构
[1] SO ILLINOIS UNIV, DEPT ECON, CARBONDALE, IL 62901 USA
关键词
asymptotic approximation; beta distribution; bias correction; maximum likelihood estimation;
D O I
10.1080/00949659708811820
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper gives closed-form expressions for bias-corrected maximum likelihood estimates of the parameters of the beta distribution that can be used to define bias-corrected estimates that are nearly unbiased. Some approximations based on asymptotic expansions for the bias corrections are given. We also present simulation results comparing the performances of the maximum likelihood estimates and corrected ones. The results suggest that bias-corrected estimates have better finite-sample performance than standard maximum likelihood estimates.
引用
收藏
页码:21 / 35
页数:15
相关论文
共 50 条
  • [1] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400
  • [2] Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution
    Giles, David E.
    Feng, Hui
    Godwin, Ryan T.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (08) : 2465 - 2483
  • [3] Bias-Corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution
    Wang, Min
    Wang, Wentao
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 530 - 545
  • [4] Bias-corrected maximum likelihood estimation of the parameters of the generalized half-normal distribution
    Mazucheli, J.
    Dey, Sanku
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1027 - 1038
  • [5] BIAS-CORRECTED MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE TWO-PARAMETER LINDLEY DISTRIBUTION
    Amer, Yasser M.
    Shalabi, Rania M.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 58 (02) : 137 - 158
  • [6] Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution
    Mazucheli, Josmar
    Berdusco Menezes, Andre Felipe
    Dey, Sanku
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 2046 - 2055
  • [7] Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies
    Hashemi, Meraj
    Schneider, Kristan A.
    [J]. PLOS ONE, 2021, 16 (12):
  • [8] Bias-Corrected Maximum Likelihood Estimators of the Parameters of the Unit-Weibull Distribution
    Mazucheli, J.
    Menezes, A. F. B.
    Alqallaf, F.
    Ghitany, M. E.
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (03) : 41 - 53
  • [9] Bias-Corrected Maximum Likelihood Estimators in Nonlinear Heteroscedastic Models
    Cordeiro, Gauss M.
    Cysneiros, Audrey H. M. A.
    Cysneiros, Francisco Jose A.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2009, 38 (15) : 2463 - 2478
  • [10] Bias-Corrected Maximum Likelihood Estimation and Bayesian Inference for the Process Performance Index Using Inverse Gaussian Distribution
    Tsai, Tzong-Ru
    Xin, Hua
    Fan, Ya-Yen
    Lio, Yuhlong
    [J]. STATS, 2022, 5 (04): : 1079 - 1096