Bias-corrected maximum likelihood estimation of the parameters of the generalized Pareto distribution

被引:24
|
作者
Giles, David E. [1 ]
Feng, Hui [2 ]
Godwin, Ryan T. [3 ]
机构
[1] Univ Victoria, Dept Econ, POB 1700,STN C&C, Victoria, BC V8W 2Y2, Canada
[2] Western Univ, Kings Univ Coll, Dept Econ Business & Math, London, ON, Canada
[3] Univ Manitoba, Dept Econ, Winnipeg, MB, Canada
关键词
Maximum likelihood; Bias reduction; Extreme values; Generalized Pareto distribution; Peaks over threshold; Parametric bootstrap; STATISTICAL-INFERENCE; REDUCTION; MODELS;
D O I
10.1080/03610926.2014.887104
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive analytic expressions for the biases, to O(n(-1)), of the maximum likelihood estimators of the parameters of the generalized Pareto distribution. Using these expressions to bias-correct the estimators in a selective manner is found to be extremely effective in terms of bias reduction, and can also result in a small reduction in relative mean squared error (MSE). In terms of remaining relative bias, the analytic bias-corrected estimators are somewhat less effective than their counterparts obtained by using a parametric bootstrap bias correction. However, the analytic correction out-performs the bootstrap correction in terms of remaining %MSE. It also performs credibly relative to other recently proposed estimators for this distribution. Taking into account the relative computational costs, this leads us to recommend the selective use of the analytic bias adjustment for most practical situations.
引用
收藏
页码:2465 / 2483
页数:19
相关论文
共 50 条
  • [1] Bias-corrected maximum likelihood estimation of the parameters of the generalized half-normal distribution
    Mazucheli, J.
    Dey, Sanku
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (06) : 1027 - 1038
  • [2] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400
  • [3] Bias-Corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution
    Wang, Min
    Wang, Wentao
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 530 - 545
  • [4] Bias-corrected maximum likelihood estimation for the beta distribution
    Cordeiro, GM
    DaRocha, EC
    DaRocha, JGC
    CribariNeto, F
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (01) : 21 - 35
  • [5] BIAS-CORRECTED MAXIMUM LIKELIHOOD ESTIMATION OF THE PARAMETERS OF THE TWO-PARAMETER LINDLEY DISTRIBUTION
    Amer, Yasser M.
    Shalabi, Rania M.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2019, 58 (02) : 137 - 158
  • [6] Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution
    Mazucheli, Josmar
    Berdusco Menezes, Andre Felipe
    Dey, Sanku
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 2046 - 2055
  • [7] Bias-Corrected Maximum Likelihood Estimators of the Parameters of the Unit-Weibull Distribution
    Mazucheli, J.
    Menezes, A. F. B.
    Alqallaf, F.
    Ghitany, M. E.
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2021, 50 (03) : 41 - 53
  • [8] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Gauss M. Cordeiro
    Denise A. Botter
    Alexsandro B. Cavalcanti
    Lúcia P. Barroso
    [J]. Statistical Papers, 2014, 55 : 643 - 652
  • [9] Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models
    Cordeiro, Gauss M.
    Botter, Denise A.
    Cavalcanti, Alexsandro B.
    Barroso, Lucia P.
    [J]. STATISTICAL PAPERS, 2014, 55 (03) : 643 - 652
  • [10] Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies
    Hashemi, Meraj
    Schneider, Kristan A.
    [J]. PLOS ONE, 2021, 16 (12):