Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models

被引:1
|
作者
Cordeiro, Gauss M. [1 ]
Botter, Denise A. [2 ]
Cavalcanti, Alexsandro B. [3 ]
Barroso, Lucia P. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, BR-50740540 Recife, PE, Brazil
[2] Univ Sao Paulo, Dept Estat, BR-05508090 Sao Paulo, Brazil
[3] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, PB, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bias estimator; Covariance matrix; Generalized linear model; Wald test; 2ND-ORDER;
D O I
10.1007/s00362-013-0514-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the first time, we obtain a general formula for the asymptotic covariance matrix of the bias-corrected maximum likelihood estimators of the linear parameters in generalized linear models, where is the sample size. The usefulness of the formula is illustrated in order to obtain a better estimate of the covariance of the maximum likelihood estimators and to construct better Wald statistics. Simulation studies and an application support our theoretical results.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 50 条