Covariance matrix of the bias-corrected maximum likelihood estimator in generalized linear models

被引:1
|
作者
Cordeiro, Gauss M. [1 ]
Botter, Denise A. [2 ]
Cavalcanti, Alexsandro B. [3 ]
Barroso, Lucia P. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Estat, BR-50740540 Recife, PE, Brazil
[2] Univ Sao Paulo, Dept Estat, BR-05508090 Sao Paulo, Brazil
[3] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58109970 Campina Grande, PB, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bias estimator; Covariance matrix; Generalized linear model; Wald test; 2ND-ORDER;
D O I
10.1007/s00362-013-0514-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For the first time, we obtain a general formula for the asymptotic covariance matrix of the bias-corrected maximum likelihood estimators of the linear parameters in generalized linear models, where is the sample size. The usefulness of the formula is illustrated in order to obtain a better estimate of the covariance of the maximum likelihood estimators and to construct better Wald statistics. Simulation studies and an application support our theoretical results.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 50 条
  • [21] ALTERNATE DERIVATION OF MAXIMUM LIKELIHOOD ESTIMATOR OF A COVARIANCE MATRIX
    NITZBERG, R
    [J]. PROCEEDINGS OF THE IEEE, 1975, 63 (11) : 1623 - 1624
  • [22] COVARIANCE MATRIX OF LIMITED INFORMATION MAXIMUM LIKELIHOOD ESTIMATOR
    BERGSTROM, AR
    [J]. ECONOMETRICA, 1972, 40 (05) : 899 - 900
  • [23] Empirical Likelihood in Generalized Linear Models with Working Covariance Matrix
    Zhou, Xiu-qing
    Gao, Qi-bing
    Zhu, Chun-hua
    Du, Xiu-li
    Mao, Liu-liu
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (01): : 87 - 97
  • [24] Empirical Likelihood in Generalized Linear Models with Working Covariance Matrix
    Xiu-qing Zhou
    Qi-bing Gao
    Chun-hua Zhu
    Xiu-li Du
    Liu-liu Mao
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 87 - 97
  • [25] Empirical Likelihood in Generalized Linear Models with Working Covariance Matrix
    Xiu-qing ZHOU
    Qi-bing GAO
    Chun-hua ZHU
    Xiu-li DU
    Liu-liu MAO
    [J]. Acta Mathematicae Applicatae Sinica, 2022, 38 (01) : 87 - 97
  • [26] Bias-corrected estimation of noncentrality parameters of covariance structure models
    Raykov, T
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2005, 12 (01) : 120 - 129
  • [27] Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution
    Mazucheli, Josmar
    Berdusco Menezes, Andre Felipe
    Dey, Sanku
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 2046 - 2055
  • [28] Bias-corrected maximum likelihood estimation of the parameters of the complex Bingham distribution
    Dore, Luiz H. G.
    Amaral, Getulio J. A.
    Cruz, Jorge T. M.
    Wood, Andrew T. A.
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (03) : 385 - 400
  • [29] Bias-Corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution
    Wang, Min
    Wang, Wentao
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (01) : 530 - 545
  • [30] A comparison of two bias-corrected covariance estimators for generalized estimating equations
    Lu, Bing
    Preisser, John S.
    Qaqish, Bahjat F.
    Suchindran, Chirayath
    Bangdiwala, Shrikant
    Wolfson, Mark
    [J]. BIOMETRICS, 2007, 63 (03) : 935 - 941